Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a18, author = {A. V. Kostin}, title = {Problem of shadow and surface of constant curvature}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {150--164}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/} }
A. V. Kostin. Problem of shadow and surface of constant curvature. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 150-164. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/
[1] G. Khudaiberganov, On uniformly polynomially convex hull of the union of balls, Manuscript Dep. VINITI 21.02.1982, No 1772–85 Dep., 1982 | MR
[2] Yu.B. Zelinskii, I.Yu. Vygovska, M.V. Stefanchuk, “Generalized convex sets and the problem of shadow”, Ukr. Math. J., 67:12 (2016), 1874–1883 | DOI | MR | Zbl
[3] Y.B. Zelinskii, “The Problem of the shadows”, Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform., 66:1 (2016), 37–42 | MR | Zbl
[4] Yu.B. Zelinskii, “Generalized convex envelopes of sets and the problem of shadow”, J. Math. Sci., New York, 211:5 (2015), 710–717 | DOI | MR | Zbl
[5] Y.B. Zelinskii, “The shadow problem for a family of convex sets”, Zb. Pr. Inst. Mat. NAN Ukr., 12:4 (2015), 197–204 | MR | Zbl
[6] Yu.B. Zelinskii, I.Yu. Vygovska, H.K. Dakhil, “The shadow problem and mixed problems”, Proc. Int. Geom. Cent., 9:3-4 (2016), 50–58 | MR
[7] Yu.B. Zelinskii, M.V. Stefanchuk, “Generalizations of the shadow problem”, Ukr. Math.J., 68:6 (2016), 862–867 | DOI | MR | Zbl
[8] T.M. Osipchuk, M.V. Tkachuk, “The problem of shadow for domains in Euclidean spaces”, J. Math. Sci., New York, 224:4 (2017), 555–562 | DOI | MR | Zbl
[9] T.M. Osipchuk, M.V. Tkachuk, “The shadow problem for the ellipsoid of revolution”, Zb. Pr. Inst. Mat. NAN Ukr., 12:3 (2015), 243–250 | Zbl
[10] A.V. Kostin, “Problem of shadow in the Lobachevskii space”, Ukr. Math. J., 70:11 (2019), 1758–1766 | DOI | MR | Zbl
[11] A.V. Kostin, “Some generalizations of the shadow problem in the Lobachevsky space”, Ukr. Math. J., 73:1 (2021), 67–75 | DOI | MR | Zbl
[12] Y.B. Zelinskii, “Problem of shadow (complex case)”, Adv. Math., Sci. J., 5:1 (2016), 1–5 | Zbl
[13] Yu.B. Zelinskii, Kh.K. Dakkhil, B.A. Klishchuk, “On weakly m-convex sets”, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 2017:4 (2017), 3–6 | MR | Zbl
[14] T.M. Osipchuk, “On semiconvexity of open sets with smooth boundery in the plane”, Proc. Intern. Geom. Center, 12:4 (2019), 69–88 | DOI | MR | Zbl
[15] B.A. Rosenfel'd, Non-Euclidean spaces, Nauka, M., 1969 | MR | Zbl
[16] A.V. Kostin, N.N. Kostina, “An interpretation of Casey's theorem and of its hyperbolic analogue”, Sib. Èlectron. Mat. Izv., 13 (2016), 242–251 | MR | Zbl
[17] F. Minding, “Ueber die Biegung krummer Flächen”, J. Reine Angew. Math., 18 (1838), 297–302 | MR | Zbl
[18] F. Minding, “Wie sich entscheiden läßt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmasse”, J. Reine Angew. Math., 19 (1839), 370–387 | MR | Zbl
[19] F. Minding, “Beiträge zur Theorie der kürzerten Linien auf krummen Flächen”, J. Reine Angew. Math., 20 (1840), 323–327 | MR | Zbl
[20] F. Klein, Vorlesungen uber nicht-euklidische Geometrie, Springer, Berlin, 1928 | MR | Zbl
[21] A.D. Sakharov, “Cosmological transitions with changes in the signature of the metric”, Zh. Eksp. Teor. Fiz., 87 (1984), 375–383
[22] A.V. Kostin, “Asymptotic lines on the pseudo-spherical surfaces”, Vladikavkaz. Mat. Zh., 21:1 (2019), 16–26 | MR | Zbl
[23] A.V. Kostin, “Asymptotic lines on pseudospheres and the angle of parallelism”, Russ. Math., 65:6 (2021), 21–28 | DOI | MR | Zbl
[24] A.V. Kostin, “Evolutes of meridians and asymptotics on pseudospheres”, J. Math. Sci., New York, 263:3 (2022), 371–378 | DOI | Zbl