Problem of shadow and surface of constant curvature
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 150-164

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of shadow in the Lobachevsky space. This problem can be considered as the establishment of conditions to ensure the membership of the points to the generalized convex hull of a family of sets. The boundary values of the parameters are determined for which the same configurations of balls ensure that the point belongs to the generalized convex hull of balls in Euclidean and hyperbolic spaces. In addition to balls, the article discusses families of horoballs, as well as combinations of balls and horoballs. The article shows how the Euclidean surfaces of revolution of constant negative curvature are connected with tangent cones to the horospheres of the Lobachevsky space.
Keywords: problem of shadow, hyperbolic space, generalized convexity, sphere, ball, surface of constant curvature, horosphere, horoball.
@article{SEMR_2023_20_1_a18,
     author = {A. V. Kostin},
     title = {Problem of shadow and surface of constant curvature},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {150--164},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - Problem of shadow and surface of constant curvature
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 150
EP  - 164
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/
LA  - ru
ID  - SEMR_2023_20_1_a18
ER  - 
%0 Journal Article
%A A. V. Kostin
%T Problem of shadow and surface of constant curvature
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 150-164
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/
%G ru
%F SEMR_2023_20_1_a18
A. V. Kostin. Problem of shadow and surface of constant curvature. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 150-164. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/