Problem of shadow and surface of constant curvature
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 150-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of shadow in the Lobachevsky space. This problem can be considered as the establishment of conditions to ensure the membership of the points to the generalized convex hull of a family of sets. The boundary values of the parameters are determined for which the same configurations of balls ensure that the point belongs to the generalized convex hull of balls in Euclidean and hyperbolic spaces. In addition to balls, the article discusses families of horoballs, as well as combinations of balls and horoballs. The article shows how the Euclidean surfaces of revolution of constant negative curvature are connected with tangent cones to the horospheres of the Lobachevsky space.
Keywords: problem of shadow, hyperbolic space, generalized convexity, sphere, ball, surface of constant curvature, horosphere, horoball.
@article{SEMR_2023_20_1_a18,
     author = {A. V. Kostin},
     title = {Problem of shadow and surface of constant curvature},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {150--164},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - Problem of shadow and surface of constant curvature
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 150
EP  - 164
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/
LA  - ru
ID  - SEMR_2023_20_1_a18
ER  - 
%0 Journal Article
%A A. V. Kostin
%T Problem of shadow and surface of constant curvature
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 150-164
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/
%G ru
%F SEMR_2023_20_1_a18
A. V. Kostin. Problem of shadow and surface of constant curvature. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 150-164. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a18/

[1] G. Khudaiberganov, On uniformly polynomially convex hull of the union of balls, Manuscript Dep. VINITI 21.02.1982, No 1772–85 Dep., 1982 | MR

[2] Yu.B. Zelinskii, I.Yu. Vygovska, M.V. Stefanchuk, “Generalized convex sets and the problem of shadow”, Ukr. Math. J., 67:12 (2016), 1874–1883 | DOI | MR | Zbl

[3] Y.B. Zelinskii, “The Problem of the shadows”, Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform., 66:1 (2016), 37–42 | MR | Zbl

[4] Yu.B. Zelinskii, “Generalized convex envelopes of sets and the problem of shadow”, J. Math. Sci., New York, 211:5 (2015), 710–717 | DOI | MR | Zbl

[5] Y.B. Zelinskii, “The shadow problem for a family of convex sets”, Zb. Pr. Inst. Mat. NAN Ukr., 12:4 (2015), 197–204 | MR | Zbl

[6] Yu.B. Zelinskii, I.Yu. Vygovska, H.K. Dakhil, “The shadow problem and mixed problems”, Proc. Int. Geom. Cent., 9:3-4 (2016), 50–58 | MR

[7] Yu.B. Zelinskii, M.V. Stefanchuk, “Generalizations of the shadow problem”, Ukr. Math.J., 68:6 (2016), 862–867 | DOI | MR | Zbl

[8] T.M. Osipchuk, M.V. Tkachuk, “The problem of shadow for domains in Euclidean spaces”, J. Math. Sci., New York, 224:4 (2017), 555–562 | DOI | MR | Zbl

[9] T.M. Osipchuk, M.V. Tkachuk, “The shadow problem for the ellipsoid of revolution”, Zb. Pr. Inst. Mat. NAN Ukr., 12:3 (2015), 243–250 | Zbl

[10] A.V. Kostin, “Problem of shadow in the Lobachevskii space”, Ukr. Math. J., 70:11 (2019), 1758–1766 | DOI | MR | Zbl

[11] A.V. Kostin, “Some generalizations of the shadow problem in the Lobachevsky space”, Ukr. Math. J., 73:1 (2021), 67–75 | DOI | MR | Zbl

[12] Y.B. Zelinskii, “Problem of shadow (complex case)”, Adv. Math., Sci. J., 5:1 (2016), 1–5 | Zbl

[13] Yu.B. Zelinskii, Kh.K. Dakkhil, B.A. Klishchuk, “On weakly m-convex sets”, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 2017:4 (2017), 3–6 | MR | Zbl

[14] T.M. Osipchuk, “On semiconvexity of open sets with smooth boundery in the plane”, Proc. Intern. Geom. Center, 12:4 (2019), 69–88 | DOI | MR | Zbl

[15] B.A. Rosenfel'd, Non-Euclidean spaces, Nauka, M., 1969 | MR | Zbl

[16] A.V. Kostin, N.N. Kostina, “An interpretation of Casey's theorem and of its hyperbolic analogue”, Sib. Èlectron. Mat. Izv., 13 (2016), 242–251 | MR | Zbl

[17] F. Minding, “Ueber die Biegung krummer Flächen”, J. Reine Angew. Math., 18 (1838), 297–302 | MR | Zbl

[18] F. Minding, “Wie sich entscheiden läßt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmasse”, J. Reine Angew. Math., 19 (1839), 370–387 | MR | Zbl

[19] F. Minding, “Beiträge zur Theorie der kürzerten Linien auf krummen Flächen”, J. Reine Angew. Math., 20 (1840), 323–327 | MR | Zbl

[20] F. Klein, Vorlesungen uber nicht-euklidische Geometrie, Springer, Berlin, 1928 | MR | Zbl

[21] A.D. Sakharov, “Cosmological transitions with changes in the signature of the metric”, Zh. Eksp. Teor. Fiz., 87 (1984), 375–383

[22] A.V. Kostin, “Asymptotic lines on the pseudo-spherical surfaces”, Vladikavkaz. Mat. Zh., 21:1 (2019), 16–26 | MR | Zbl

[23] A.V. Kostin, “Asymptotic lines on pseudospheres and the angle of parallelism”, Russ. Math., 65:6 (2021), 21–28 | DOI | MR | Zbl

[24] A.V. Kostin, “Evolutes of meridians and asymptotics on pseudospheres”, J. Math. Sci., New York, 263:3 (2022), 371–378 | DOI | Zbl