Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a15, author = {Kumar Tripathi Brijesh and S. B. Chandak and V. K. Chaubey}, title = {Lagrange spaces with changed {Z.} {Shen} square metric}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {17--24}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a15/} }
TY - JOUR AU - Kumar Tripathi Brijesh AU - S. B. Chandak AU - V. K. Chaubey TI - Lagrange spaces with changed Z. Shen square metric JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 17 EP - 24 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a15/ LA - en ID - SEMR_2023_20_1_a15 ER -
%0 Journal Article %A Kumar Tripathi Brijesh %A S. B. Chandak %A V. K. Chaubey %T Lagrange spaces with changed Z. Shen square metric %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 17-24 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a15/ %G en %F SEMR_2023_20_1_a15
Kumar Tripathi Brijesh; S. B. Chandak; V. K. Chaubey. Lagrange spaces with changed Z. Shen square metric. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 17-24. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a15/
[1] B. Nicolaescu, “Lagrange spaces with $ (\alpha, \beta) $-metric”, Appl. Sci., 3:1 (2001), 42–47 | MR | Zbl
[2] B. Nicolaescu, “The variational problem in Lagrange spaces endowed with $ (\alpha, \beta) $-metric”, Proceedings of the 3rd international colloquium of mathematics in engineering and numerical physics, MENP-3, Mathematics sections (Bucharest, Romania, October 7-9, 2004), BSG Proceedings, 12, ed. Balan Vladimir, Geometry Balkan Press, Bucharest, 2005, 202–207 | MR | Zbl
[3] C. Shibata, “On invariant tensors of $ \beta $-changes of Finsler metrics”, J. Math. Kyoto Univ., 24 (1984), 163–188 | MR | Zbl
[4] J. Kern, “Lagrange geometry”, Arch. Math., 25 (1974), 438–443 | DOI | MR | Zbl
[5] I.M. Gelfand, S.V. Fomin, Calculus of variations, Dover Publications, Mineola, 2000 | MR | Zbl
[6] M. Matsumoto, “On some transformations of locally Minkowskian space”, Tensor, New Ser., 22 (1971), 103–111 | MR | Zbl
[7] M. Matsumoto, “Theory of Finsler spaces with $ (\alpha, \beta) $-metric”, Rep. Math. Phys., 31:1 (1992), 43–83 | DOI | MR | Zbl
[8] R. Miron, “A Lagrangian theory of relativity, I; II”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, N. Ser., Secţ. Ia, 32:2 (1986), 7–16 | MR | Zbl
[9] R. Miron, “Lagrange geometry”, Math. Comput. Modelling, 20:4-5 (1994), 25–40 | DOI | MR | Zbl
[10] R. Miron, M. Anastasiei, The geometry of Lagrange spaces: theory and applications, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl
[11] T.N. Pandey, V.K. Chaubey, “The variational problem in Lagrange spaces endowed with $ (\gamma, \beta) $ metric”, Int. J. Pure Appl. Math., 71:4 (2011), 633–638 | MR | Zbl
[12] T.N. Pandey, V.K. Chaubey, “Lagrange spaces with $\beta$-change”, Int. J. Contemp. Math. Sci., 7:45-48 (2012), 2363–2371 | MR | Zbl
[13] S.-S. Chern, Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, 6, World Scientific, Hackensack, 2005 | DOI | MR | Zbl
[14] Z. Shen, G. Civi Yildirim, “On a class of projectively flat metrics with constant flag curvature”, Can. J. Math., 60:2 (2008), 443–456 | DOI | MR | Zbl