Critical Multitype Branching Processes on a Graph and the Model of the HIV Infection Development
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 465-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Crump-Mode-Jagers branching process on an oriented graph in an application to modeling the development of HIV-1 infection in a human organism. For all particles of the same global type, located at each of the verteces or arcs of the graph, different types are assigned. Checking the criticality condition and searching for the eigenvectors of an offspring mean matrix in the critical case for the original process are reduced to an offspring mean matrix for some Galton-Watson process. The last has the types of particles corresponding only to the verteces of the graph.
Keywords: Crump-Mode-Jagers branching process on an oriented graph, Yaglom type limit theorem for critical branching process, eigenvectors for the mean matrix of high dimension, stochastic model of HIV-1 infection.
@article{SEMR_2023_20_1_a14,
     author = {V. A. Topchii and N. V. Pertsev},
     title = {Critical {Multitype} {Branching} {Processes} on a {Graph} and the {Model} of the {HIV} {Infection} {Development}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {465--476},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a14/}
}
TY  - JOUR
AU  - V. A. Topchii
AU  - N. V. Pertsev
TI  - Critical Multitype Branching Processes on a Graph and the Model of the HIV Infection Development
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 465
EP  - 476
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a14/
LA  - ru
ID  - SEMR_2023_20_1_a14
ER  - 
%0 Journal Article
%A V. A. Topchii
%A N. V. Pertsev
%T Critical Multitype Branching Processes on a Graph and the Model of the HIV Infection Development
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 465-476
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a14/
%G ru
%F SEMR_2023_20_1_a14
V. A. Topchii; N. V. Pertsev. Critical Multitype Branching Processes on a Graph and the Model of the HIV Infection Development. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 465-476. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a14/

[1] G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, “Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling”, Math. Model. Nat. Phenom., 7:5 (2012), 78–104 | DOI | MR | Zbl

[2] W.I. Sundquist, H.G. Kräusslich, “HIV-1 assembly, budding, and maturation”, Cold Spring Harb Perspect Med., 2 (2012), a006924 | DOI

[3] A.S. Perelson, R.M. Ribeiro, “Modeling the within-host dynamics of HIV infection”, BMC Biology, 11 (2013), 96 | DOI

[4] S. Nakaoka, S. Iwami, K. Sato, “Dynamics of HIV infection in lymphoid tissue network”, J. Math. Biol., 72:4 (2016), 909–938 | DOI | MR | Zbl

[5] D. Sánchez-Taltavull, A. Vieiro, T. Alarcón, “Stochastic modelling of the eradication of the HIV-1 infection by stimulation of latently infected cells in patients under highly active anti-retroviral therapy”, J. Math. Biol., 73:4 (2016), 919–946 | DOI | MR | Zbl

[6] N.V. Pertsev, B.Yu. Pichugin, K.K. Loginov, “Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations”, J. Appl. Ind. Math., 13:1 (2019), 103–117 | DOI | MR | Zbl

[7] K. Loginov, N. Pertsev, V. Topchii, “Stochastic modeling of compartmental systems with pipes”, Math. Biol. Bioinf., 14:1 (2019), 188–203 | DOI

[8] N. Pertsev, V. Topchii, K. Loginov, “Numerical modeling of the transition of infected cells and virions between two lymph nodes in a stochastic model of HIV-1 infection”, Russ. J. Numer. Anal. Math. Model., 36:5 (2021), 293–302 | DOI | MR | Zbl

[9] G.A. Bocharov, K.K. Loginov, N.V. Pertsev, V.A. Topchii, “Direct statistical modeling of HIV-1 infection based on a non-Markovian stochastic model”, Comput. Math. Math. Phys., 61:8 (2021), 1229–1251 | DOI | MR | Zbl

[10] P. Jagers, Branching processes with biological applications, Wiley Sons, London etc, 1975 | MR | Zbl

[11] T.E. Harris, The theory of branching processes, Springer-Verlag, Berlin etc, 1963 | MR | Zbl

[12] B.A. Sevast'yanov, Verzweigungsprozesse, Mathematische Lehrbücher und Monographien. II. Abt. Mathematische Monographien, 34, Akademie-Verlag, Berlin, 1974 | MR | Zbl

[13] J.M. Holte, “Critical multitype branching processes”, Ann. Probab., 10:2 (1982), 482–495 | DOI | MR | Zbl

[14] K.B. Athreya, P.E. Ney, Branching processes, Springer-Verlag, Berlin-Heidelberg-New York, 1972 | MR | Zbl