The complexity of quasivariety lattices.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 501-513
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if a quasivariety $\mathbf{K}$ contains a finite $\mathrm{B}^\ast$-class relative to some subquasivariety and some variety possessing some additional property, then $\mathbf{K}$ contains continuum many $Q$-universal non-profinite subquasivarieties having an independent quasi-equational basis as well as continuum many $Q$-universal non-profinite subquasivarieties having no such basis.
Keywords:
quasi-equational basis, quasivariety, profinite structure, profinite quasivariety.
Mots-clés : inverse limit
Mots-clés : inverse limit
@article{SEMR_2023_20_1_a11,
author = {M. V. Schwidefsky},
title = {The complexity of quasivariety {lattices.~II}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {501--513},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/}
}
M. V. Schwidefsky. The complexity of quasivariety lattices.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 501-513. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/