The complexity of quasivariety lattices.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 501-513

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a quasivariety $\mathbf{K}$ contains a finite $\mathrm{B}^\ast$-class relative to some subquasivariety and some variety possessing some additional property, then $\mathbf{K}$ contains continuum many $Q$-universal non-profinite subquasivarieties having an independent quasi-equational basis as well as continuum many $Q$-universal non-profinite subquasivarieties having no such basis.
Keywords: quasi-equational basis, quasivariety, profinite structure, profinite quasivariety.
Mots-clés : inverse limit
@article{SEMR_2023_20_1_a11,
     author = {M. V. Schwidefsky},
     title = {The complexity of quasivariety {lattices.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {501--513},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - The complexity of quasivariety lattices.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 501
EP  - 513
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/
LA  - en
ID  - SEMR_2023_20_1_a11
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T The complexity of quasivariety lattices.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 501-513
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/
%G en
%F SEMR_2023_20_1_a11
M. V. Schwidefsky. The complexity of quasivariety lattices.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 501-513. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/