The complexity of quasivariety lattices.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 501-513.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a quasivariety $\mathbf{K}$ contains a finite $\mathrm{B}^\ast$-class relative to some subquasivariety and some variety possessing some additional property, then $\mathbf{K}$ contains continuum many $Q$-universal non-profinite subquasivarieties having an independent quasi-equational basis as well as continuum many $Q$-universal non-profinite subquasivarieties having no such basis.
Keywords: quasi-equational basis, quasivariety, profinite structure, profinite quasivariety.
Mots-clés : inverse limit
@article{SEMR_2023_20_1_a11,
     author = {M. V. Schwidefsky},
     title = {The complexity of quasivariety {lattices.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {501--513},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - The complexity of quasivariety lattices.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 501
EP  - 513
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/
LA  - en
ID  - SEMR_2023_20_1_a11
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T The complexity of quasivariety lattices.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 501-513
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/
%G en
%F SEMR_2023_20_1_a11
M. V. Schwidefsky. The complexity of quasivariety lattices.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 501-513. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a11/

[1] M. E. Adams, W. Dziobiak, “$Q$-universal quasivarieties of algebras”, Proc. Amer. Math. Soc., 120:4 (1994), 1053–1059 | MR | Zbl

[2] A. Basheyeva, A. Nurakunov, M. Schwidefsky, and A. Zamojska-Dzienio, “Lattices of subclasses. III”, Siberian Electronic Mathematical Reports, 14 (2017), 252–263 http://semr.math.nsc.ru/v14/p252-263.pdf | MR | Zbl

[3] D. M. Clark, B. A. Davey, Natural Dualities for the Working Algebraist, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[4] D. M. Clark, B. A. Davey, R. S. Freese, and M. Jackson, “Standard topological algebras: syntactic and principal congruences and profiniteness”, Algebra Universalis, 52:2-3 (2005), 343–376 | DOI | MR

[5] D. M. Clark, B. A. Davey, M. Haviar, J. G. Pitkethly, and M. R. Talukder, “Standard topological quasi-varieties”, Houston J. Math., 29:4 (2003), 859–887 | MR | Zbl

[6] D. M. Clark, B. A. Davey, M. G. Jackson, and J. G. Pitkethly, “The axiomatizability of topological prevarieties”, Adv. Math., 218:5 (2008), 1604–1653 | DOI | MR | Zbl

[7] B. A. Davey, M. Jackson, M. Maroti, R. N. McKenzie, “Principal and syntactic congruences in congruence-distributive and congruence-permutable varieties”, J. Austral. Math. Soc., 85:1 (2008), 59–74 | DOI | MR | Zbl

[8] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Plenum, New York, 1998 | MR

[9] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “Structure of quasivariety lattices. I. Independent axiomatizability”, Algebra and Logic, 57:6 (2018), 445–462 | DOI | MR

[10] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “Structure of quasivariety lattices. II. Undecidable problems”, Algebra and Logic, 58:2 (2019), 123–136 | DOI | MR | Zbl

[11] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “Structure of quasivariety lattices. III. Finitely partitionable bases”, Algebra and Logic, 59:3 (2020), 222–229 | DOI | MR | Zbl

[12] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “Structure of quasivariety lattices. IV. Nonstandard quasivarieties”, Siberian Math. J., 62:5 (2021), 850–858 | DOI | MR | Zbl

[13] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “On representation of finite lattices”, Algebra Universalis, 80:1 (2019), 15 | DOI | MR

[14] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “On the complexity of the lattices of subvarieties and congruences”, Internat. J. Algebra Comput., 30:8 (2020), 1609–1624 | DOI | MR

[15] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “Quasi-equational bases of differential groupoids and unary algebras”, Siberian Electronic Mathematical Reports, 14 (2017), 1330–1337 http://semr.math.nsc.ru/v14/p1330-1337.pdf | MR | Zbl

[16] A. V. Kravchenko, M. V. Schwidefsky, “On the complexity of variety lattices and congruence lattices. II. Differential groupoids and unary algebras”, Siberian Electronic Mathematical Reports, 17 (2020), 753–768 http://semr.math.nsc.ru/v17/p753-768.pdf | MR | Zbl

[17] A. V. Kravchenko, M. V. Schwidefsky, “On non-standard quasivarieties of differential groupoids and unary algebras”, Siberian Electronic Mathematical Reports, 19:2 (2022), 768–783 http://semr.math.nsc.ru/v19/n2/p768-783.pdf | MR

[18] V. Koubek, J. Sichler, “Universality of small lattice varieties”, Proc. Amer. Math. Soc., 91:1 (1984), 19–24 | DOI | MR | Zbl

[19] V. Koubek, J. Sichler, “On almost universal varieties of modular lattices”, Algebra Universalis, 45:2–3 (2001), 191–210 | MR | Zbl

[20] V. Koubek, J. Sichler, “Almost ${f}{f}$-universal and $Q$-universal varieties of modular $0$-lattices”, College Math. J., 101:2 (2004), 161–182 | DOI | MR | Zbl

[21] V. Koubek, J. Sichler, “Finitely generated almost universal varieties of $0$-lattices”, Comment. Math. Univ. Carolin., 46:2 (2005), 304–325 | MR

[22] V. Koubek, J. Sichler, “On synchronized relatively full embeddings and $Q$-universality”, Cahiers de Topologie et Géométrie Différentielle Catégoriques, XLIX:4 (2008), 289–306 | MR | Zbl

[23] V. Koubek, J. Sichler, “Almost $ff$-universality implies $Q$-universality”, Appl. Categor. Struct., 17:5 (2009), 419–434 | DOI | MR | Zbl

[24] A. M. Nurakunov, M. V. Schwidefsky, Profinite locally finite quasivarieties, submitted for publication in 2022

[25] A. M. Nurakunov, M. M. Stronkowski, “Profiniteness in finitely generated varieties is undecidable”, J. Symb. Logic, 83:4 (2018), 1566–1578 | DOI | MR | Zbl

[26] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam, 1980 | MR | Zbl

[27] A. B. Romanowska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl

[28] M. V. Schwidefsky, “On complexity of quasivariety lattices”, Algebra and Logic, 54:3 (2015), 245–257 | DOI | MR | Zbl

[29] M. V. Schwidefsky, “On sufficient conditions for $Q$-universality”, Siberian Electronic Mathematical Reports, 17 (2020), 1043–1051 http://semr.math.nsc.ru/v17/p1043-1051.pdf | MR | Zbl

[30] M. V. Schwidefsky, “Existence of independent quasi-equational bases”, Algebra and Logic, 58:6 (2020), 514–537 | DOI | MR | Zbl

[31] M. V. Schwidefsky, “On the existence of independent quasi-equational bases. II”, Algebra and Logic (to appear)

[32] M. V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. II”, Internat. J. Algebra Comput., 24:8 (2014), 1099–1126 | DOI | MR | Zbl