Quasivarieties generated by small suborder lattices. I. Equational bases
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 62-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

For each cardinal $\kappa>0$, the quasivariety generated by the suborder lattice of $M_\kappa$ is a finitely based variety. An equational basis for this variety is found.
Keywords: lattice, quasivariety, variety, poset.
@article{SEMR_2023_20_1_a1,
     author = {O. A. Kadyrova and M. V. Schwidefsky},
     title = {Quasivarieties generated by small suborder lattices. {I.} {Equational} bases},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {62--71},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a1/}
}
TY  - JOUR
AU  - O. A. Kadyrova
AU  - M. V. Schwidefsky
TI  - Quasivarieties generated by small suborder lattices. I. Equational bases
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 62
EP  - 71
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a1/
LA  - en
ID  - SEMR_2023_20_1_a1
ER  - 
%0 Journal Article
%A O. A. Kadyrova
%A M. V. Schwidefsky
%T Quasivarieties generated by small suborder lattices. I. Equational bases
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 62-71
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a1/
%G en
%F SEMR_2023_20_1_a1
O. A. Kadyrova; M. V. Schwidefsky. Quasivarieties generated by small suborder lattices. I. Equational bases. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 62-71. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a1/

[1] M.E. Adams, W. Dziobiak, A.V. Kravchenko, M.V. Schwidefsky, Remarks about complete lattice homomorphic images of algebraic lattices, manuscript, 2022 | MR

[2] A.O. Basheyeva, K.D. Sultankulov, M.V. Schwidefsky, “The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 902–911 | MR

[3] D. Bredikhin, B. Schein, “Representation of ordered semigroups and lattices by binary relations”, Colloq. Math., 39 (1978), 1–12 | DOI | MR | Zbl

[4] W. Dziobiak, M.V. Schwidefsky, “Categorical dualities for some two categories of lattices: An extended abstract”, Bull. Sec. Logic, 51:3 (2022), 329–344 | DOI | MR

[5] R. Freese, J. Ježek, J.B. Nation, Free lattices, Mathematical Surveys and Monographs, 42, American Mathematical Society, Providence, 1995 | DOI | MR | Zbl

[6] V.A. Gorbunov, Algebraic theory of quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1998 | MR | Zbl

[7] A.P. Huhn, “Schwach distributive Verbände. I”, Acta Sci. Math., 33 (1972), 297–305 | MR | Zbl

[8] A.I. Maltsev, Algebraic systems, Springer-Verlag, Berlin etc, 1973 | MR | Zbl

[9] J.B. Nation, “An approach to lattice varieties of finite height”, Algebra Univers., 27:4 (1990), 521–543 | DOI | MR | Zbl

[10] V.B. Repnitskiǐ, “On finite lattices which are embeddable in subsemigroup lattices”, Semigroup Forum, 46:3 (1993), 388–397 | DOI | MR | Zbl

[11] V.B. Repnitskiǐ, “On representation of lattices by lattices of semigroups”, Russ. Math., 40:1 (1996), 55–64 | MR | Zbl

[12] M.V. Semenova, “Lattices of suborders”, Sib. Math. J., 40:3 (1999), 577–584 | DOI | MR | Zbl

[13] M.V. Semenova, “Lattices that are embeddable into suborder lattices”, Algebra Logic, 44:4 (2005), 270–285 | DOI | MR | Zbl

[14] M.V. Semenova, “On lattices embeddable into subsemigroup lattices. III. Nilpotent semigroups”, Sib. Math. J., 48:1 (2007), 156–164 | DOI | MR | Zbl

[15] B. Sivák, “Representation of finite lattices by orders on finite sets”, Math. Slovaca, 28:2 (1978), 203–215 | MR | Zbl