Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a1, author = {O. A. Kadyrova and M. V. Schwidefsky}, title = {Quasivarieties generated by small suborder lattices. {I.} {Equational} bases}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {62--71}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a1/} }
TY - JOUR AU - O. A. Kadyrova AU - M. V. Schwidefsky TI - Quasivarieties generated by small suborder lattices. I. Equational bases JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 62 EP - 71 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a1/ LA - en ID - SEMR_2023_20_1_a1 ER -
%0 Journal Article %A O. A. Kadyrova %A M. V. Schwidefsky %T Quasivarieties generated by small suborder lattices. I. Equational bases %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 62-71 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a1/ %G en %F SEMR_2023_20_1_a1
O. A. Kadyrova; M. V. Schwidefsky. Quasivarieties generated by small suborder lattices. I. Equational bases. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 62-71. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a1/
[1] M.E. Adams, W. Dziobiak, A.V. Kravchenko, M.V. Schwidefsky, Remarks about complete lattice homomorphic images of algebraic lattices, manuscript, 2022 | MR
[2] A.O. Basheyeva, K.D. Sultankulov, M.V. Schwidefsky, “The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 902–911 | MR
[3] D. Bredikhin, B. Schein, “Representation of ordered semigroups and lattices by binary relations”, Colloq. Math., 39 (1978), 1–12 | DOI | MR | Zbl
[4] W. Dziobiak, M.V. Schwidefsky, “Categorical dualities for some two categories of lattices: An extended abstract”, Bull. Sec. Logic, 51:3 (2022), 329–344 | DOI | MR
[5] R. Freese, J. Ježek, J.B. Nation, Free lattices, Mathematical Surveys and Monographs, 42, American Mathematical Society, Providence, 1995 | DOI | MR | Zbl
[6] V.A. Gorbunov, Algebraic theory of quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1998 | MR | Zbl
[7] A.P. Huhn, “Schwach distributive Verbände. I”, Acta Sci. Math., 33 (1972), 297–305 | MR | Zbl
[8] A.I. Maltsev, Algebraic systems, Springer-Verlag, Berlin etc, 1973 | MR | Zbl
[9] J.B. Nation, “An approach to lattice varieties of finite height”, Algebra Univers., 27:4 (1990), 521–543 | DOI | MR | Zbl
[10] V.B. Repnitskiǐ, “On finite lattices which are embeddable in subsemigroup lattices”, Semigroup Forum, 46:3 (1993), 388–397 | DOI | MR | Zbl
[11] V.B. Repnitskiǐ, “On representation of lattices by lattices of semigroups”, Russ. Math., 40:1 (1996), 55–64 | MR | Zbl
[12] M.V. Semenova, “Lattices of suborders”, Sib. Math. J., 40:3 (1999), 577–584 | DOI | MR | Zbl
[13] M.V. Semenova, “Lattices that are embeddable into suborder lattices”, Algebra Logic, 44:4 (2005), 270–285 | DOI | MR | Zbl
[14] M.V. Semenova, “On lattices embeddable into subsemigroup lattices. III. Nilpotent semigroups”, Sib. Math. J., 48:1 (2007), 156–164 | DOI | MR | Zbl
[15] B. Sivák, “Representation of finite lattices by orders on finite sets”, Math. Slovaca, 28:2 (1978), 203–215 | MR | Zbl