Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a0, author = {N. Bazhenov and B. Kalmurzayev and M. Zubkov}, title = {A note on joins and meets for positive linear preorders}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1--16}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a0/} }
TY - JOUR AU - N. Bazhenov AU - B. Kalmurzayev AU - M. Zubkov TI - A note on joins and meets for positive linear preorders JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1 EP - 16 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a0/ LA - en ID - SEMR_2023_20_1_a0 ER -
N. Bazhenov; B. Kalmurzayev; M. Zubkov. A note on joins and meets for positive linear preorders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a0/
[1] Yu.L. Ershov, “Positive equivalences”, Algebra Logic, 10 (1973), 378–394 | DOI | MR | Zbl
[2] Yu.L. Ershov, Theory of numerations, Nauka, M., 1977 | MR
[3] C. Bernardi, “On the relation provable equivalence and on partitions in effectively inseparable sets”, Stud. Log., 40:1 (1981), 29–37 | DOI | MR | Zbl
[4] C. Bernardi, A. Sorbi, “Classifying positive equivalence relations”, J. Symb. Log., 48:3 (1983), 529–538 | DOI | MR | Zbl
[5] A.H. Lachlan, “A note on positive equivalence relations”, Z. Math. Logik Grundlag. Math., 33:1 (1987), 43–46 | DOI | MR | Zbl
[6] U. Andrews, S. Badaev, A. Sorbi, “A survey on universal computably enumerable equivalence relations”, Computability and Complexity. Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday, Lect. Notes Comput. Sci., 10010, eds. A. Day, M. Fellows, N. Greenberg, B. Khoussainov, A. Melnikov, F. Rosamond, Springer, Cham, 2017, 418–451 | DOI | MR | Zbl
[7] S. Gao and P. Gerdes, “Computably enumerable equivalence relations”, Stud. Log., 67:1 (2001), 27–59 | DOI | MR | Zbl
[8] U. Andrews, A. Sorbi, “Joins and meets in the structure of ceers”, Computability, 8:3–4 (2019), 193–241 | DOI | MR | Zbl
[9] U. Andrews, S. Lempp, J.S. Miller, K.M. Ng, L. San Mauro, A. Sorbi, “Universal computably enumerable equivalence relations”, J. Symb. Log., 79:1 (2014), 60–88 | DOI | MR | Zbl
[10] U. Andrews, N. Schweber, A. Sorbi, “The theory of ceers computes true arithmetic”, Ann. Pure Appl. Logic, 171:8 (2020), 102811 | DOI | MR | Zbl
[11] U. Andrews, A. Sorbi, “Effective inseparability, lattices, and preordering relations”, Rev. Symb. Log., 14:4 (2021), 838–865 | DOI | MR | Zbl
[12] S.A. Badaev, B.S. Kalmurzayev, D.K. Kabylzhanova, K.Sh. Abeshev, “Universal positive preorders”, News of the National Academy of Sciences of the Republic of Kazakhstan. Physico-Mathematical Series, 6:322 (2018), 49–53 | MR
[13] S.A. Badaev, N.A. Bazhenov, B.S. Kalmurzaev, “On the structure of positive preorders”, Algebra Logic, 59:3 (2020), 201–215 | DOI | MR | Zbl
[14] S.A. Badaev, B.S. Kalmurzayev, N.K. Mukash, A.A. Khamitova, “Special classes of positive preorders”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1657–1666 | DOI | MR | Zbl
[15] A. Askarbekkyzy, N.A. Bazhenov, B.S. Kalmurzayev, “Computable reducibility for computable linear orders of type $\omega$”, J. Math. Sci., 267:4 (2022), 429–443 | DOI | MR
[16] C.J. Ash, J.F. Knight, Computable structures and the hyperarithmetical hierarchy, Studies in Logic and the Foundations of Mathematics, 144, Elsevier, Amsterdam, 2000 | MR | Zbl
[17] J.G. Rosenstein, Linear orderings, Pure and Applied Mathematics, 98, Academic Press, New York, 1982 | MR | Zbl
[18] N.A. Bazhenov, B.S. Kalmurzaev, “On dark computably enumerable equivalence relations”, Sib. Math. J., 59:1 (2018), 22–30 | DOI | MR | Zbl
[19] V.S. Harizanov, “Turing degrees of certain isomorphic images of computable relations”, Ann. Pure Appl. Logic, 93:1-3 (1998), 103–113 | DOI | MR | Zbl