A note on joins and meets for positive linear preorders
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Math-Net.Ru

A positive preorder $R$ is linear if the corresponding quotient poset is linearly ordered. Following the recent advances in the studies of positive preorders, the paper investigates the degree structure Celps of positive linear preorders under computable reducibility. We prove that if a positive linear preorder $L$ is non-universal and the quotient poset of $L$ is infinite, then $L$ is a part of an infinite antichain inside Celps. For a pair $L,R$ from Celps, we obtain sufficient conditions for when the pair has neither join, nor meet (with respect to computable reducibility). We give an example of a pair from Celps that has a meet. Inside the substructure $\Omega$ of Celps containing only computable linear orders of order-type $\omega$, we build a pair that has a join inside $\Omega$.
Keywords: computable reducibility, computably enumerable preorder, positive linear preorder.
@article{SEMR_2023_20_1_a0,
     author = {N. Bazhenov and B. Kalmurzayev and M. Zubkov},
     title = {A note on joins and meets for positive linear preorders},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a0/}
}
TY  - JOUR
AU  - N. Bazhenov
AU  - B. Kalmurzayev
AU  - M. Zubkov
TI  - A note on joins and meets for positive linear preorders
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1
EP  - 16
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a0/
LA  - en
ID  - SEMR_2023_20_1_a0
ER  - 
%0 Journal Article
%A N. Bazhenov
%A B. Kalmurzayev
%A M. Zubkov
%T A note on joins and meets for positive linear preorders
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1-16
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a0/
%G en
%F SEMR_2023_20_1_a0
N. Bazhenov; B. Kalmurzayev; M. Zubkov. A note on joins and meets for positive linear preorders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a0/