Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 809-814

Voir la notice de l'article provenant de la source Math-Net.Ru

A finitely generated group $G$ acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group ($GBS$ group). In this paper, we study when a given $GBS$ group can be embedded in a right-angled Artin group ($RAAG$) and vice versa. An exhaustive description has been obtained in both cases. If an embedding exists, then we discuss its construction.
Keywords: right-angled Artin group, generalized Baumslag–Solitar group, embedding problem.
@article{SEMR_2022_19_2_a8,
     author = {F. A. Dudkin},
     title = {Mutual embeddings of right-angled {Artin} groups and generalized {Baumslag-Solitar} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {809--814},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a8/}
}
TY  - JOUR
AU  - F. A. Dudkin
TI  - Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 809
EP  - 814
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a8/
LA  - en
ID  - SEMR_2022_19_2_a8
ER  - 
%0 Journal Article
%A F. A. Dudkin
%T Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 809-814
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a8/
%G en
%F SEMR_2022_19_2_a8
F. A. Dudkin. Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 809-814. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a8/