The formula of maximal possible rank of commutator subgroups of finite $p$-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 804-808
Cet article a éte moissonné depuis la source Math-Net.Ru
All groups in the abstract are finite. We define rank $d(G)$ of a $p$-group $G$ as the minimal number of generators of $G$. In this paper, we obtain a compact formula for the strict upper bound of the ranks of commutator subgroups of finite $p$-groups generated by elements of given orders. This bound was described in a recent article of the author. But the corresponding formula was very complicated although containing some useful information. The new formula is much more simple and clear.
Keywords:
finite $p$-group generated by elements of orders $p^{k_1},\dots,p^{k_n}$, number of generators of commutator subgroup of a finite $p$-group.
@article{SEMR_2022_19_2_a7,
author = {B. M. Veretennikov},
title = {The formula of maximal possible rank of commutator subgroups of finite $p$-groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {804--808},
year = {2022},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a7/}
}
TY - JOUR AU - B. M. Veretennikov TI - The formula of maximal possible rank of commutator subgroups of finite $p$-groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 804 EP - 808 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a7/ LA - ru ID - SEMR_2022_19_2_a7 ER -
B. M. Veretennikov. The formula of maximal possible rank of commutator subgroups of finite $p$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 804-808. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a7/
[1] B.M. Veretennikov, “The strict upper bound of ranks of commutator subgroups of finite $p$-groups”, Sib. Èlectron. Mat. Izv., 16 (2019), 1885–1900 | DOI | MR | Zbl
[2] B.M. Veretennikov, “On the commutator subgroups of finite 2-groups generated by involutions”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 77–84 | DOI | MR