Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a6, author = {V. N. Zhelyabin and P. S. Kolesnikov}, title = {Zhelyabin, {V.N.,} {Kolesnikov,} {P.S.} {Dual} coalgebra of the differential polinomial algebra in one variable and related coalgebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {792--803}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/} }
TY - JOUR AU - V. N. Zhelyabin AU - P. S. Kolesnikov TI - Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 792 EP - 803 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/ LA - ru ID - SEMR_2022_19_2_a6 ER -
%0 Journal Article %A V. N. Zhelyabin %A P. S. Kolesnikov %T Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 792-803 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/ %G ru %F SEMR_2022_19_2_a6
V. N. Zhelyabin; P. S. Kolesnikov. Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 792-803. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/
[1] M. Sweedler, Hopf algebras, W.A. Benjamin, Inc., New York, 1969 | MR | Zbl
[2] V.G. Drinfel'd, “Quantum groups”, Proc. Int. Congr. Math. (Berkeley/Calif., 1986), v. 1, Amer. Math. Soc., Providence, 1987, 798–820 | MR | Zbl
[3] V.G. Drinfel'd, “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations”, Sov. Math., Dokl., 27 (1983), 68–71 | MR | Zbl
[4] W. Michaelis, “Lie coalgebras”, Adv. Math., 38 (1980), 1–54 | DOI | MR | Zbl
[5] J. Anquella, T. Cortés, F. Montaner, “Nonassociative coalgebras”, Comm. Algebra, 22:12 (1994), 4693–4716 | DOI | MR | Zbl
[6] V.N. Zhelyabin, “Structurable coalgebras”, Algebra Logic, 35:5 (1996), 296–304 | DOI | MR | Zbl
[7] V.N. Zhelyabin, “Embedding of Jordan copairs into Lie coalgebras”, Commun. Algebra, 35:2 (2007), 561–576 | DOI | MR | Zbl
[8] G. Santos Filho, L. Murakami, I. Shestakov, “Locally finite coalgebras and the locally nilpotent radical I”, Linear Algebra Appl., 621 (2021), 235–253 | DOI | MR | Zbl
[9] A.M. Slinko, “Local finiteness of coalgebraic Lie coalgebras”, Commun. Algebra, 23:3 (1995), 1165–1170 | DOI | MR | Zbl
[10] V.N. Zhelyabin, “The Kantor-Koecher-Tits construction for Jordan coalgebras”, Algebra Logic, 35:2 (1996), 96–104 | DOI | MR | Zbl
[11] V.N. Zhelyabin, “Jordan (super)coalgebras and Lie (super)coalgebras”, Sib. Math. J., 44:1 (2003), 73–92 | DOI | MR | Zbl
[12] M.E. Goncharov, V.N. Zhelyabin, “Mikheev's construction for Mal'tsev coalgebras”, Algebra Logic, 51:5 (2012), 445–447 | DOI | MR | Zbl
[13] M.E. Goncharov, V.N. Zhelyabin, “Embedding Mal'tsev coalgebras into Lie coalgebras with triality”, Algebra Logic, 52:1 (2013), 24–40 | DOI | MR | Zbl
[14] D.Kh. Kozybaev, “Right-alternative and right-symmetric coalgebras”, South-Kazakhstan Science and Education, 19:12 (2000), 155–163
[15] D. Kozybaev, U. Umirbaev, V. Zhelyabin, “Some examples of nonassociative coalgebras and supercoalgebras”, Linear Algebra Appl., 643 (2022), 235–257 | DOI | MR | Zbl
[16] G. Santos Filho, L. Murakami, I. Shestakov, “Locally finite coalgebras and the locally nilpotent radical II”, Commun. Algebra, 49:12 (2021), 5472–5482 | DOI | MR | Zbl
[17] W. Michaelis, “An example of a non-zero Lie coalgebra M for which Loc(M) = 0”, J. Pure Appl. Algebra, 68:3 (1990), 341–348 | DOI | MR | Zbl
[18] W.D. Nichols, “The structure of the dual Lie coalgebra of the Witt algebra”, J. Pure Appl. Algebra, 68:3 (1990), 359–364 | DOI | MR | Zbl
[19] W.D. Nichols, “On Lie and associative duals”, J. Pure Appl. Algebra, 87:3 (1993), 313–320 | DOI | MR | Zbl
[20] G. Griffing, “The dual coalgebra of certain infinite-dimensional Lie algebras”, Commun. Algebra, 30:12 (2002), 5715–5724 | DOI | MR | Zbl
[21] V.N. Zhelyabin, “Dual coalgebras of Jordan bialgebras and superalgebras”, Sib. Math. J., 46:6 (2005), 1050–1061 | DOI | MR | Zbl
[22] I.M. Gel'fand, I.Ya. Dorfman, “Hamiltonian operators and algebraic structures related to them”, Funkts. Anal. Prilozh., 13:4 (1979), 13–30 | MR | Zbl
[23] A.A. Balinskii, S.P. Novikov, “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Sov. Math., Dokl., 32 (1985), 228–231 | MR | Zbl
[24] D. Kozybaev, U. Umirbaev, “Identities of the left-simmtric Witt algebras”, Int. J. Algebra Comput., 26:2 (2016), 435–450 | DOI | MR | Zbl
[25] I.L. Kantor, “Jordan and Lie superalgebras determined by a Poisson algebra”, Proceedings of the second Siberian school, Amer. Math. Soc. Transl. Ser. 2, 151, eds. Aleksandrov I. A. (ed.) et al., Amer. Math. Soc., 1992, 55–80 | MR | Zbl
[26] D. King, K. McCrimmon, “The Kantor doubling process revisited”, Comm. Algebra, 23:1 (1995), 357–372 | DOI | MR | Zbl