Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 792-803.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the dual coalgebra of the polynomial algebra in one variable is the space of linearly recursive sequences over an arbitrary field. Moreover, this coalgebra is a differential one relative to the dual standard derivation and does not contain nonzero finite-dimensional differentially closed subcoalgebras if the characteristic of the ground field is zero. We construct a Novikov coalgebra which is the dual coalgebra of the left-symmetric Witt algebra of index one. Also, we construct a Jordan supercoalgebra which is dual to the Jordan superalgebra of vector type of the polynomial algebra in one variable. All these coalgebras do not contain non-zero finite-dimensional subcoalgebras if the characteristic of ground field is zero. It is shown that over a field of characteristic different from 2 the adjoint Lie coalgebra of the dual coalgebra of the left-symmetric Witt algebra of index one is isomorphic to the dual coalgebra of the Witt algebra of index one.
Mots-clés : coalgebra
Keywords: coderivation, associative commutative algebra, differential algebra, Novikov algebra, Lie algebra, Witt algebra, Jordan superalgebra, locally finite coalgebra.
@article{SEMR_2022_19_2_a6,
     author = {V. N. Zhelyabin and P. S. Kolesnikov},
     title = {Zhelyabin, {V.N.,} {Kolesnikov,} {P.S.} {Dual} coalgebra of the differential polinomial algebra in one variable and related coalgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {792--803},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
AU  - P. S. Kolesnikov
TI  - Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 792
EP  - 803
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/
LA  - ru
ID  - SEMR_2022_19_2_a6
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%A P. S. Kolesnikov
%T Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 792-803
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/
%G ru
%F SEMR_2022_19_2_a6
V. N. Zhelyabin; P. S. Kolesnikov. Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 792-803. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/

[1] M. Sweedler, Hopf algebras, W.A. Benjamin, Inc., New York, 1969 | MR | Zbl

[2] V.G. Drinfel'd, “Quantum groups”, Proc. Int. Congr. Math. (Berkeley/Calif., 1986), v. 1, Amer. Math. Soc., Providence, 1987, 798–820 | MR | Zbl

[3] V.G. Drinfel'd, “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations”, Sov. Math., Dokl., 27 (1983), 68–71 | MR | Zbl

[4] W. Michaelis, “Lie coalgebras”, Adv. Math., 38 (1980), 1–54 | DOI | MR | Zbl

[5] J. Anquella, T. Cortés, F. Montaner, “Nonassociative coalgebras”, Comm. Algebra, 22:12 (1994), 4693–4716 | DOI | MR | Zbl

[6] V.N. Zhelyabin, “Structurable coalgebras”, Algebra Logic, 35:5 (1996), 296–304 | DOI | MR | Zbl

[7] V.N. Zhelyabin, “Embedding of Jordan copairs into Lie coalgebras”, Commun. Algebra, 35:2 (2007), 561–576 | DOI | MR | Zbl

[8] G. Santos Filho, L. Murakami, I. Shestakov, “Locally finite coalgebras and the locally nilpotent radical I”, Linear Algebra Appl., 621 (2021), 235–253 | DOI | MR | Zbl

[9] A.M. Slinko, “Local finiteness of coalgebraic Lie coalgebras”, Commun. Algebra, 23:3 (1995), 1165–1170 | DOI | MR | Zbl

[10] V.N. Zhelyabin, “The Kantor-Koecher-Tits construction for Jordan coalgebras”, Algebra Logic, 35:2 (1996), 96–104 | DOI | MR | Zbl

[11] V.N. Zhelyabin, “Jordan (super)coalgebras and Lie (super)coalgebras”, Sib. Math. J., 44:1 (2003), 73–92 | DOI | MR | Zbl

[12] M.E. Goncharov, V.N. Zhelyabin, “Mikheev's construction for Mal'tsev coalgebras”, Algebra Logic, 51:5 (2012), 445–447 | DOI | MR | Zbl

[13] M.E. Goncharov, V.N. Zhelyabin, “Embedding Mal'tsev coalgebras into Lie coalgebras with triality”, Algebra Logic, 52:1 (2013), 24–40 | DOI | MR | Zbl

[14] D.Kh. Kozybaev, “Right-alternative and right-symmetric coalgebras”, South-Kazakhstan Science and Education, 19:12 (2000), 155–163

[15] D. Kozybaev, U. Umirbaev, V. Zhelyabin, “Some examples of nonassociative coalgebras and supercoalgebras”, Linear Algebra Appl., 643 (2022), 235–257 | DOI | MR | Zbl

[16] G. Santos Filho, L. Murakami, I. Shestakov, “Locally finite coalgebras and the locally nilpotent radical II”, Commun. Algebra, 49:12 (2021), 5472–5482 | DOI | MR | Zbl

[17] W. Michaelis, “An example of a non-zero Lie coalgebra M for which Loc(M) = 0”, J. Pure Appl. Algebra, 68:3 (1990), 341–348 | DOI | MR | Zbl

[18] W.D. Nichols, “The structure of the dual Lie coalgebra of the Witt algebra”, J. Pure Appl. Algebra, 68:3 (1990), 359–364 | DOI | MR | Zbl

[19] W.D. Nichols, “On Lie and associative duals”, J. Pure Appl. Algebra, 87:3 (1993), 313–320 | DOI | MR | Zbl

[20] G. Griffing, “The dual coalgebra of certain infinite-dimensional Lie algebras”, Commun. Algebra, 30:12 (2002), 5715–5724 | DOI | MR | Zbl

[21] V.N. Zhelyabin, “Dual coalgebras of Jordan bialgebras and superalgebras”, Sib. Math. J., 46:6 (2005), 1050–1061 | DOI | MR | Zbl

[22] I.M. Gel'fand, I.Ya. Dorfman, “Hamiltonian operators and algebraic structures related to them”, Funkts. Anal. Prilozh., 13:4 (1979), 13–30 | MR | Zbl

[23] A.A. Balinskii, S.P. Novikov, “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Sov. Math., Dokl., 32 (1985), 228–231 | MR | Zbl

[24] D. Kozybaev, U. Umirbaev, “Identities of the left-simmtric Witt algebras”, Int. J. Algebra Comput., 26:2 (2016), 435–450 | DOI | MR | Zbl

[25] I.L. Kantor, “Jordan and Lie superalgebras determined by a Poisson algebra”, Proceedings of the second Siberian school, Amer. Math. Soc. Transl. Ser. 2, 151, eds. Aleksandrov I. A. (ed.) et al., Amer. Math. Soc., 1992, 55–80 | MR | Zbl

[26] D. King, K. McCrimmon, “The Kantor doubling process revisited”, Comm. Algebra, 23:1 (1995), 357–372 | DOI | MR | Zbl