Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 792-803 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the dual coalgebra of the polynomial algebra in one variable is the space of linearly recursive sequences over an arbitrary field. Moreover, this coalgebra is a differential one relative to the dual standard derivation and does not contain nonzero finite-dimensional differentially closed subcoalgebras if the characteristic of the ground field is zero. We construct a Novikov coalgebra which is the dual coalgebra of the left-symmetric Witt algebra of index one. Also, we construct a Jordan supercoalgebra which is dual to the Jordan superalgebra of vector type of the polynomial algebra in one variable. All these coalgebras do not contain non-zero finite-dimensional subcoalgebras if the characteristic of ground field is zero. It is shown that over a field of characteristic different from 2 the adjoint Lie coalgebra of the dual coalgebra of the left-symmetric Witt algebra of index one is isomorphic to the dual coalgebra of the Witt algebra of index one.
Mots-clés : coalgebra
Keywords: coderivation, associative commutative algebra, differential algebra, Novikov algebra, Lie algebra, Witt algebra, Jordan superalgebra, locally finite coalgebra.
@article{SEMR_2022_19_2_a6,
     author = {V. N. Zhelyabin and P. S. Kolesnikov},
     title = {Zhelyabin, {V.N.,} {Kolesnikov,} {P.S.} {Dual} coalgebra of the differential polinomial algebra in one variable and related coalgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {792--803},
     year = {2022},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
AU  - P. S. Kolesnikov
TI  - Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 792
EP  - 803
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/
LA  - ru
ID  - SEMR_2022_19_2_a6
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%A P. S. Kolesnikov
%T Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 792-803
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/
%G ru
%F SEMR_2022_19_2_a6
V. N. Zhelyabin; P. S. Kolesnikov. Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 792-803. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a6/

[1] M. Sweedler, Hopf algebras, W.A. Benjamin, Inc., New York, 1969 | MR | Zbl

[2] V.G. Drinfel'd, “Quantum groups”, Proc. Int. Congr. Math. (Berkeley/Calif., 1986), v. 1, Amer. Math. Soc., Providence, 1987, 798–820 | MR | Zbl

[3] V.G. Drinfel'd, “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations”, Sov. Math., Dokl., 27 (1983), 68–71 | MR | Zbl

[4] W. Michaelis, “Lie coalgebras”, Adv. Math., 38 (1980), 1–54 | DOI | MR | Zbl

[5] J. Anquella, T. Cortés, F. Montaner, “Nonassociative coalgebras”, Comm. Algebra, 22:12 (1994), 4693–4716 | DOI | MR | Zbl

[6] V.N. Zhelyabin, “Structurable coalgebras”, Algebra Logic, 35:5 (1996), 296–304 | DOI | MR | Zbl

[7] V.N. Zhelyabin, “Embedding of Jordan copairs into Lie coalgebras”, Commun. Algebra, 35:2 (2007), 561–576 | DOI | MR | Zbl

[8] G. Santos Filho, L. Murakami, I. Shestakov, “Locally finite coalgebras and the locally nilpotent radical I”, Linear Algebra Appl., 621 (2021), 235–253 | DOI | MR | Zbl

[9] A.M. Slinko, “Local finiteness of coalgebraic Lie coalgebras”, Commun. Algebra, 23:3 (1995), 1165–1170 | DOI | MR | Zbl

[10] V.N. Zhelyabin, “The Kantor-Koecher-Tits construction for Jordan coalgebras”, Algebra Logic, 35:2 (1996), 96–104 | DOI | MR | Zbl

[11] V.N. Zhelyabin, “Jordan (super)coalgebras and Lie (super)coalgebras”, Sib. Math. J., 44:1 (2003), 73–92 | DOI | MR | Zbl

[12] M.E. Goncharov, V.N. Zhelyabin, “Mikheev's construction for Mal'tsev coalgebras”, Algebra Logic, 51:5 (2012), 445–447 | DOI | MR | Zbl

[13] M.E. Goncharov, V.N. Zhelyabin, “Embedding Mal'tsev coalgebras into Lie coalgebras with triality”, Algebra Logic, 52:1 (2013), 24–40 | DOI | MR | Zbl

[14] D.Kh. Kozybaev, “Right-alternative and right-symmetric coalgebras”, South-Kazakhstan Science and Education, 19:12 (2000), 155–163

[15] D. Kozybaev, U. Umirbaev, V. Zhelyabin, “Some examples of nonassociative coalgebras and supercoalgebras”, Linear Algebra Appl., 643 (2022), 235–257 | DOI | MR | Zbl

[16] G. Santos Filho, L. Murakami, I. Shestakov, “Locally finite coalgebras and the locally nilpotent radical II”, Commun. Algebra, 49:12 (2021), 5472–5482 | DOI | MR | Zbl

[17] W. Michaelis, “An example of a non-zero Lie coalgebra M for which Loc(M) = 0”, J. Pure Appl. Algebra, 68:3 (1990), 341–348 | DOI | MR | Zbl

[18] W.D. Nichols, “The structure of the dual Lie coalgebra of the Witt algebra”, J. Pure Appl. Algebra, 68:3 (1990), 359–364 | DOI | MR | Zbl

[19] W.D. Nichols, “On Lie and associative duals”, J. Pure Appl. Algebra, 87:3 (1993), 313–320 | DOI | MR | Zbl

[20] G. Griffing, “The dual coalgebra of certain infinite-dimensional Lie algebras”, Commun. Algebra, 30:12 (2002), 5715–5724 | DOI | MR | Zbl

[21] V.N. Zhelyabin, “Dual coalgebras of Jordan bialgebras and superalgebras”, Sib. Math. J., 46:6 (2005), 1050–1061 | DOI | MR | Zbl

[22] I.M. Gel'fand, I.Ya. Dorfman, “Hamiltonian operators and algebraic structures related to them”, Funkts. Anal. Prilozh., 13:4 (1979), 13–30 | MR | Zbl

[23] A.A. Balinskii, S.P. Novikov, “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Sov. Math., Dokl., 32 (1985), 228–231 | MR | Zbl

[24] D. Kozybaev, U. Umirbaev, “Identities of the left-simmtric Witt algebras”, Int. J. Algebra Comput., 26:2 (2016), 435–450 | DOI | MR | Zbl

[25] I.L. Kantor, “Jordan and Lie superalgebras determined by a Poisson algebra”, Proceedings of the second Siberian school, Amer. Math. Soc. Transl. Ser. 2, 151, eds. Aleksandrov I. A. (ed.) et al., Amer. Math. Soc., 1992, 55–80 | MR | Zbl

[26] D. King, K. McCrimmon, “The Kantor doubling process revisited”, Comm. Algebra, 23:1 (1995), 357–372 | DOI | MR | Zbl