Restoration of images corrupted by stripe interference using Radon domain filtering
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 540-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the problem of removing noise that has some anisotropy in a certain direction, in images received as a result of remote sensing. Such interference can occur with satellite imagery of the surface of Earth and planets due to the peculiarities of the imaging equipment. In the article, the method of removing such noise in the Radon space is considered, using its singular value decomposition. The use of this approach provides significant advantages over spatial filtering methods when pixel brightness values are used and can be a noticeable loss of useful information in the form of a blurring of borders. When using filtering in the Radon space to remove periodic noise predominantly only interference is removed, since only a small part of the Radon projections corresponds to noise. The numerical experiments on real-world images demonstrate the efficiency of the techniques proposed.
Keywords: image restoration, stripe interference, ridge functions.
Mots-clés : Radon transform
@article{SEMR_2022_19_2_a49,
     author = {I. G. Kazantsev and R. Z. Turebekov and M. A. Sultanov},
     title = {Restoration of images corrupted by stripe interference using {Radon} domain filtering},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {540--547},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a49/}
}
TY  - JOUR
AU  - I. G. Kazantsev
AU  - R. Z. Turebekov
AU  - M. A. Sultanov
TI  - Restoration of images corrupted by stripe interference using Radon domain filtering
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 540
EP  - 547
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a49/
LA  - en
ID  - SEMR_2022_19_2_a49
ER  - 
%0 Journal Article
%A I. G. Kazantsev
%A R. Z. Turebekov
%A M. A. Sultanov
%T Restoration of images corrupted by stripe interference using Radon domain filtering
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 540-547
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a49/
%G en
%F SEMR_2022_19_2_a49
I. G. Kazantsev; R. Z. Turebekov; M. A. Sultanov. Restoration of images corrupted by stripe interference using Radon domain filtering. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 540-547. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a49/

[1] R.C. Gonzalez, R.E. Woods, Digital image processing, Pearson, New York, 2018

[2] Q. Song, Y. Wang, X. Yan, H. Gu, “Remote sensing images stripe noise removal by double sparse regulation and region separation”, Remote Sens., 10:7 (2018), 998 | DOI

[3] H.H. Barrett, “Optical processing in Radon space”, Opt. Lett., 7:6 (1982), 248–250 | DOI

[4] W.E. Smith, H.H. Barrett, “Radon transform and band width compression”, Opt. Lett., 8:7 (1983), 395–397 | DOI

[5] G.R. Gindi, A.F. Gmitro, “Optical feature extraction via the Radon transform”, Opt. Engin., 23:5 (1984), 499–506 | DOI

[6] F. Natterer, The mathematics of computerized tomography, B.G. Teubner, Chichester etc.; John Wiley Sons, Stuttgart, 1986 | MR | Zbl

[7] B.F. Logan, L.A. Shepp, “Optimal reconstruction of a function from its projections”, Duke Math. J., 42 (1975), 645–659 | MR | Zbl

[8] M.E. Davison, “A singular value decomposition for the Radon transform in n-dimensional Euclidean space”, Numer. Funct. Anal. Optim., 3 (1981), 321–340 | DOI | MR | Zbl

[9] M.E. Davison, F.A. Grunbaum, “Tomographic reconstruction with arbitrary directions”, Commun. Pure Appl. Math., 34 (1981), 77–119 | DOI | MR | Zbl

[10] A.K. Louis, “Optimal sampling in nuclear magnetic resonance (NMR) tomography”, J. Comput. Assist. Tomogr., 6:2 (1982), 334–340 | DOI | MR

[11] A. Pinkus, Ridge functions, Cambridge University Press, Cambridge, 2015 | MR | Zbl

[12] S.V. Konyagin, A.A. Kuleshov, V.K. Maiorov, “Some problems in the theory of ridge functions”, Proc. Steklov Inst. Math., 301 (2018), 144–169 | DOI | MR | Zbl

[13] V.E. Ismailov, Notes on ridge functions and neural networks, 29 Aug 2020, arXiv: 2005.14125 [math.CA]

[14] I.G. Kazantsev, I. Lemahieu, “Reconstruction of elongated structures using ridge functions and natural pixels”, Inverse Probl., 16:2 (2000), 505–517 | DOI | Zbl

[15] L.A. Vese, S.J. Osher, “Modeling textures with total variation minimization and oscillating patterns in image processing”, J. Sci. Comput., 19:1-3 (2003), 553–572 | DOI | MR | Zbl

[16] P. Maurel, J.F. Aujol, G. Peyré, “Locally parallel textures modelling”, SIAM J. Imaging Sci., 4:1 (2011), 413–447 | DOI | MR | Zbl

[17] I.G. Kazantsev, R.Z. Turebekov, M.A. Sultanov, “Modeling Regular Textures in Images Using the Radon Transform”, J. Appl. Ind. Math., 15:2 (2021), 223–233 | DOI | MR

[18] MODIS data, http://modis.gsfc.nasa.gov/data

[19] Hyperion data, http://eol.usgs.gov/sensors/hyperion