On the continuity of Sobolev-type functions on homogeneous metric spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 460-483.

Voir la notice de l'article provenant de la source Math-Net.Ru

On $s$-homogeneous metric spaces with measure for Sobolev-type functions with "smoothness" $\alpha \le 1$ we prove the property $s/\alpha$- absolute continuity, in the case when the characteristics that define "smoothness" belong to the corresponding Lorentz space.
Keywords: Lorentz space, Sobolev type functions, homogeneous metric spaces, absolute continuity.
@article{SEMR_2022_19_2_a48,
     author = {A. S. Romanov},
     title = {On the continuity of {Sobolev-type} functions on homogeneous metric spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {460--483},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a48/}
}
TY  - JOUR
AU  - A. S. Romanov
TI  - On the continuity of Sobolev-type functions on homogeneous metric spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 460
EP  - 483
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a48/
LA  - ru
ID  - SEMR_2022_19_2_a48
ER  - 
%0 Journal Article
%A A. S. Romanov
%T On the continuity of Sobolev-type functions on homogeneous metric spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 460-483
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a48/
%G ru
%F SEMR_2022_19_2_a48
A. S. Romanov. On the continuity of Sobolev-type functions on homogeneous metric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 460-483. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a48/

[1] J. Kauhanen, P. Koskela, J. Maly, “On function with derivatives in a Lorentz space”, Manuscr. Math., 100:1 (1999), 87–101 | DOI | MR | Zbl

[2] A.S. Romanov, “Absolute continuity of the Sobolev type functions on metric spaces”, Sib. Math. J., 49:5 (2008), 911–918 | DOI | MR | Zbl

[3] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971 | MR | Zbl

[4] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[5] P. Hajłasz, J. Kinnunen, “Hölder quasicontinuity of Sobolev functions on metric spaces”, Rev. Mat. Iberoam., 14:3 (1998), 601–622 | MR | Zbl

[6] A.S. Romanov, “Traces of functions of generalized Sobolev classes”, Sib. Math. J., 48:4 (2007), 678–693 | DOI | MR | Zbl

[7] A. Jonsson, H. Wallin, “Function spaces on subsets of $R^n$”, Math. Rep., 2, no. 1, Harwood Academic Publishers, London, 1984 | MR | Zbl

[8] P. Hajłasz, O. Martio, “Traces of Sobolev functions on fractal type sets and characterization of extension domains”, J. Funct. Anal., 143:1 (1997), 221–246 | DOI | MR | Zbl