Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a48, author = {A. S. Romanov}, title = {On the continuity of {Sobolev-type} functions on homogeneous metric spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {460--483}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a48/} }
TY - JOUR AU - A. S. Romanov TI - On the continuity of Sobolev-type functions on homogeneous metric spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 460 EP - 483 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a48/ LA - ru ID - SEMR_2022_19_2_a48 ER -
A. S. Romanov. On the continuity of Sobolev-type functions on homogeneous metric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 460-483. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a48/
[1] J. Kauhanen, P. Koskela, J. Maly, “On function with derivatives in a Lorentz space”, Manuscr. Math., 100:1 (1999), 87–101 | DOI | MR | Zbl
[2] A.S. Romanov, “Absolute continuity of the Sobolev type functions on metric spaces”, Sib. Math. J., 49:5 (2008), 911–918 | DOI | MR | Zbl
[3] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971 | MR | Zbl
[4] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl
[5] P. Hajłasz, J. Kinnunen, “Hölder quasicontinuity of Sobolev functions on metric spaces”, Rev. Mat. Iberoam., 14:3 (1998), 601–622 | MR | Zbl
[6] A.S. Romanov, “Traces of functions of generalized Sobolev classes”, Sib. Math. J., 48:4 (2007), 678–693 | DOI | MR | Zbl
[7] A. Jonsson, H. Wallin, “Function spaces on subsets of $R^n$”, Math. Rep., 2, no. 1, Harwood Academic Publishers, London, 1984 | MR | Zbl
[8] P. Hajłasz, O. Martio, “Traces of Sobolev functions on fractal type sets and characterization of extension domains”, J. Funct. Anal., 143:1 (1997), 221–246 | DOI | MR | Zbl