Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1038-1053.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes a numerical method, which considers specific CFD (computational fluid dynamics) aspects of viscous incompressible flow simulations in the vicinity of interfaces between nonconforming grid fragments. An example implementation of the method is presented for the case of the finite-volume approximation of the Navier-Stokes equations. The method is based on the GGI (General Grid Interface) principle, which does not require initial grid modification and involves conservative flux interpolation. This method enables simulations of viscous incompressible flow simulations on grid models of complex-geometry structures composed of several independently constructed grid fragments, which have nonconforming grids at adjacent boundaries and can be joined together through nonconforming interfaces. The paper reports simulation results for turbulent flow in a circular tube with an abrupt reduction in diameter on a grid model composed of nonconforming unstructured grid fragments. The effect of the nonconforming interface on the accuracy of solution and the rate of convergence of iterations is demonstrated.
Keywords: hydrodynamic flows, unmatched grids, General Grid Interface, SIMPLE algorithm, unmatched grid interface.
@article{SEMR_2022_19_2_a47,
     author = {A. V. Korotkov and A. S. Kozelkov},
     title = {Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1038--1053},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a47/}
}
TY  - JOUR
AU  - A. V. Korotkov
AU  - A. S. Kozelkov
TI  - Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 1038
EP  - 1053
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a47/
LA  - ru
ID  - SEMR_2022_19_2_a47
ER  - 
%0 Journal Article
%A A. V. Korotkov
%A A. S. Kozelkov
%T Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 1038-1053
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a47/
%G ru
%F SEMR_2022_19_2_a47
A. V. Korotkov; A. S. Kozelkov. Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1038-1053. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a47/

[1] V. Efremov, A. Kozelkov, S. Dmitriev, A. Kurkin, V. Kurulin, D. Utkin, “Technology of 3D simulation of high-speed damping processes in the hydraulic brake device”, Computational Models in Engineering, ed. K. Volkov, Kingston University, London, 2018

[2] A.V. Struchkov, A.S. Kozelkov, K. Volkov, A.A. Kurkin, R.N. Zhuchkov, A.V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15 | DOI

[3] A.S. Kozelkov, M.A. Pogosyan, D.Y. Strelets, N.V. Tarasova, “Application of mathematical modeling to solve the emergency water landing task in the interests of passenger aircraft certification”, Aerospace Systems, 4 (2021), 75–89 | DOI

[4] M. Berger, “On conservation at grid interfaces”, SIAM J. Numer. Anal., 24:5 (1987), 967–984 | DOI | MR | Zbl

[5] H. Jasak, Z. Tukovic, “Automatic mesh motion for the unstructured finite volume method”, Transactions of FAMENA, 30:2 (2007), 1–20

[6] Erik Bjerklund, A modification of the movingConeTopoFvMesh library, Report for the PhD course in OpenFOAM at Chalmers TH, Göteborg, Sverige, 2009

[7] F. Piscaglia, A. Montorfano, A. Onorati, Development of fully-automatic parallel algorithms for mesh handling in the openFOAM $ \textregistered $-2.2.x Technology, SAE Technical Paper 2013-24-0027, 2013

[8] N. Qin, G. Carnie, A. LeMoigne, X. Liu, S. Shahpar, “Buffer layer method for linking two non-matching multi-block structured grids”, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (05 January 2009 – 08 January 2009 Orlando, Florida), 2009, 5–8

[9] Y. Wang, N. Qin, G. Carnie, S. Shahpar, “Zipper layer method for linking two dissimilar structured meshes”, J. Comput. Phys., 255 (2013), 130–148 | DOI | MR | Zbl

[10] Y. Zhang, H. Chen, S. Fu, “Improvement to patched grid technique with high-order conservative remapping method”, J. Aircr., 48:3 (2011), 884–893 | DOI

[11] M. Beaudoin, H. Jasak, “Development of generalized grid interface for turbomachinery simulation with OpenFOAM”, Proceedings of the OpenSource CFD International Conference, Berlin, 2008

[12] M. Beaudoin, H. Nilsson, M. Page, H.Jasak, “Evaluation of an improved mixing plane interface for OpenFOAM”, Computational and Experimental Techniques, IOP Conf. Series: Earth and Environmental Science, 22, 022004 | DOI

[13] A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Comput. Math. Math. Phys., 56:8 (2016), 1506–1516 | DOI | MR | Zbl

[14] S.V. Lashkin, A.S. Kozelkov, A.V. Yalozo, V.Yu. Gerasimov, D.K. Zelensky, “Efficiency analysis of the parallel Implementation of the SIMPLE algorithm on multiprocessor computers”, J. Appl. Mech. Tech. Physics, 58:7 (2017), 1242–1259 | DOI | MR

[15] L.D. Landau, E.M. Lifshitz, Fluid mechanics, Pergamon Press, Oxford etc, 1987 | MR | Zbl

[16] J.H. Ferziger, M. Perić, Computational method for fluid dynamics, Springer-Verlag, Berlin, 2002 | MR | Zbl

[17] R.D. Moser, J. Kim, N.N. Mansour, “Direct numerical simulation of turbulent channel flow up to $Re_\tau$=590”, Phys. Fluids, 11:4 (1999), 943–945 | DOI | Zbl

[18] H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flow, PhD Thesis, Imperial College London, London, 1996

[19] O.V. Chentsov, A.V. Skvortsov, “Overview of polygon overlay construction algorithms”, Bulletin of Tomsk State University, 280 (2003), 338–345

[20] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia, 2003 | MR | Zbl

[21] I.E. Idel'chik, Handbook of hydraulic resistance, Mashinostroenie, M., 1992

[22] E.S. Tyatyushkina, A.S. Kozelkov, A.A. Kurkin, E.N. Pelinovsky, V.V. Kurulin, K.S. Plygunova, D.A. Utkin, “Verification of the LOGOS software package for tsunami simulations”, Geosciences, 10:10 (2020), 385 | DOI

[23] F.R. Menter, A.V. Garbaruk, Y. Egorov, “Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows”, Proc. of 3rd European Conference for Aero-Space Sciences, EUCASS (July 6-9th, 2009, Versailles), 2009