Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a47, author = {A. V. Korotkov and A. S. Kozelkov}, title = {Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1038--1053}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a47/} }
TY - JOUR AU - A. V. Korotkov AU - A. S. Kozelkov TI - Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 1038 EP - 1053 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a47/ LA - ru ID - SEMR_2022_19_2_a47 ER -
%0 Journal Article %A A. V. Korotkov %A A. S. Kozelkov %T Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 1038-1053 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a47/ %G ru %F SEMR_2022_19_2_a47
A. V. Korotkov; A. S. Kozelkov. Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1038-1053. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a47/
[1] V. Efremov, A. Kozelkov, S. Dmitriev, A. Kurkin, V. Kurulin, D. Utkin, “Technology of 3D simulation of high-speed damping processes in the hydraulic brake device”, Computational Models in Engineering, ed. K. Volkov, Kingston University, London, 2018
[2] A.V. Struchkov, A.S. Kozelkov, K. Volkov, A.A. Kurkin, R.N. Zhuchkov, A.V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15 | DOI
[3] A.S. Kozelkov, M.A. Pogosyan, D.Y. Strelets, N.V. Tarasova, “Application of mathematical modeling to solve the emergency water landing task in the interests of passenger aircraft certification”, Aerospace Systems, 4 (2021), 75–89 | DOI
[4] M. Berger, “On conservation at grid interfaces”, SIAM J. Numer. Anal., 24:5 (1987), 967–984 | DOI | MR | Zbl
[5] H. Jasak, Z. Tukovic, “Automatic mesh motion for the unstructured finite volume method”, Transactions of FAMENA, 30:2 (2007), 1–20
[6] Erik Bjerklund, A modification of the movingConeTopoFvMesh library, Report for the PhD course in OpenFOAM at Chalmers TH, Göteborg, Sverige, 2009
[7] F. Piscaglia, A. Montorfano, A. Onorati, Development of fully-automatic parallel algorithms for mesh handling in the openFOAM $ \textregistered $-2.2.x Technology, SAE Technical Paper 2013-24-0027, 2013
[8] N. Qin, G. Carnie, A. LeMoigne, X. Liu, S. Shahpar, “Buffer layer method for linking two non-matching multi-block structured grids”, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (05 January 2009 – 08 January 2009 Orlando, Florida), 2009, 5–8
[9] Y. Wang, N. Qin, G. Carnie, S. Shahpar, “Zipper layer method for linking two dissimilar structured meshes”, J. Comput. Phys., 255 (2013), 130–148 | DOI | MR | Zbl
[10] Y. Zhang, H. Chen, S. Fu, “Improvement to patched grid technique with high-order conservative remapping method”, J. Aircr., 48:3 (2011), 884–893 | DOI
[11] M. Beaudoin, H. Jasak, “Development of generalized grid interface for turbomachinery simulation with OpenFOAM”, Proceedings of the OpenSource CFD International Conference, Berlin, 2008
[12] M. Beaudoin, H. Nilsson, M. Page, H.Jasak, “Evaluation of an improved mixing plane interface for OpenFOAM”, Computational and Experimental Techniques, IOP Conf. Series: Earth and Environmental Science, 22, 022004 | DOI
[13] A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Comput. Math. Math. Phys., 56:8 (2016), 1506–1516 | DOI | MR | Zbl
[14] S.V. Lashkin, A.S. Kozelkov, A.V. Yalozo, V.Yu. Gerasimov, D.K. Zelensky, “Efficiency analysis of the parallel Implementation of the SIMPLE algorithm on multiprocessor computers”, J. Appl. Mech. Tech. Physics, 58:7 (2017), 1242–1259 | DOI | MR
[15] L.D. Landau, E.M. Lifshitz, Fluid mechanics, Pergamon Press, Oxford etc, 1987 | MR | Zbl
[16] J.H. Ferziger, M. Perić, Computational method for fluid dynamics, Springer-Verlag, Berlin, 2002 | MR | Zbl
[17] R.D. Moser, J. Kim, N.N. Mansour, “Direct numerical simulation of turbulent channel flow up to $Re_\tau$=590”, Phys. Fluids, 11:4 (1999), 943–945 | DOI | Zbl
[18] H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flow, PhD Thesis, Imperial College London, London, 1996
[19] O.V. Chentsov, A.V. Skvortsov, “Overview of polygon overlay construction algorithms”, Bulletin of Tomsk State University, 280 (2003), 338–345
[20] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia, 2003 | MR | Zbl
[21] I.E. Idel'chik, Handbook of hydraulic resistance, Mashinostroenie, M., 1992
[22] E.S. Tyatyushkina, A.S. Kozelkov, A.A. Kurkin, E.N. Pelinovsky, V.V. Kurulin, K.S. Plygunova, D.A. Utkin, “Verification of the LOGOS software package for tsunami simulations”, Geosciences, 10:10 (2020), 385 | DOI
[23] F.R. Menter, A.V. Garbaruk, Y. Egorov, “Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows”, Proc. of 3rd European Conference for Aero-Space Sciences, EUCASS (July 6-9th, 2009, Versailles), 2009