Nonlinear input-output balance and Young duality: analysis of Covid-19 macroeconomic impact on Kazakhstan
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 835-851.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the possibilities of the new approach to the inter-industry linkages modeling for the analysis of regional macroeconomic effects of Covid-19. Our approach is based on the mathematical framework of nonlinear input-output balance that allows to find the equilibrium point in the set of industry inputs and prices by solving the primal nonlinear resource allocation problem and the Young dual problem of prices formation. We identify and calibrate the model on the base of aggregated official input-output statistics of Kazakhstan. Given the scenario conditions for primal factors prices and final consumption in the economy the model allows to evaluate the new competitive equilibrium in the production network. The advantage of the model is non-linearity of balances and technologies that allows substitution of industry inputs. In the case of technologies with constant elasticity of substitution (CES) we apply the model to analysis of macroeconomic responses of the Kazakhstan economy to the Covid-19 pandemic.
Keywords: resource allocation problem, Young duality, Covid-19 macroeconomic shocks, input-output table, supply network.
@article{SEMR_2022_19_2_a46,
     author = {A. Boranbayev and N. Obrosova and A. Shananin},
     title = {Nonlinear input-output balance and {Young} duality: analysis of {Covid-19} macroeconomic impact on {Kazakhstan}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {835--851},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a46/}
}
TY  - JOUR
AU  - A. Boranbayev
AU  - N. Obrosova
AU  - A. Shananin
TI  - Nonlinear input-output balance and Young duality: analysis of Covid-19 macroeconomic impact on Kazakhstan
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 835
EP  - 851
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a46/
LA  - en
ID  - SEMR_2022_19_2_a46
ER  - 
%0 Journal Article
%A A. Boranbayev
%A N. Obrosova
%A A. Shananin
%T Nonlinear input-output balance and Young duality: analysis of Covid-19 macroeconomic impact on Kazakhstan
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 835-851
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a46/
%G en
%F SEMR_2022_19_2_a46
A. Boranbayev; N. Obrosova; A. Shananin. Nonlinear input-output balance and Young duality: analysis of Covid-19 macroeconomic impact on Kazakhstan. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 835-851. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a46/

[1] M.S. Eichenbaum, S. Rebelo, M. Trabandt, “The macroeconomics of epidemics”, Rev. Finance Studies, 34:11 (2021), 5149–5187 | DOI

[2] D. Acemoglu, V. Chernozhukov, I. Werning, M.D. Whinston, A multi-risk SIR model with optimally targeted lockdown, NBER Working Paper No 27102, 2020

[3] F.E. Alvarez, D. Argente, F. Lippi, A simple planning problem for Covid-19 lockdown, NBER Working Paper No 26981, 2020

[4] W. Leontief, “Quantitative input-output relations in the economic system of the United States”, Review of Economics and Statistics, 18:3 (1936), 105–125 | DOI

[5] W.W. Leontief, The structure of American economy, 1919-1939: An empirical application of equilibrium analysis, Oxford University Press, New York, 1951

[6] R.E. Miller, P.D. Blair, Input-output analysis. Foundations and extensions, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[7] S.A. Ashmanov, Introduction to mathematical economics, URSS, M., 2022 ; 1984 | MR | Zbl

[8] A. Pichler, J.D. Farmer, “Simultaneous supply and demand constraints in input-output networks: the case of Covid-19 in Germany, Italy, and Spain”, Economic Systems Research, 34:3 (2021), 273–293 | DOI

[9] B. Bonadio, Zhen Huo, A.A. Levchenko, N. Pandalai-Nayar, Global supply chains in the pandemic, NBER Working Paper No 27224, 2020

[10] A. Pichler, M. Pangallo, et al., “Forecasting the propagation of pandemic shocks with a dynamic input-output model”, J. Econ. Dyn. Control, 144 (2022), 104527 | DOI

[11] J. Bonet-Moron, D. Ricciulli-Marín, G.J. Perez-Valbuena, et al., “Regional economic impact of COVID-19 in Colombia: An input-output approach”, Reg. Sci. Policy Pract., 12:6 (2020), 1123–1150 | DOI

[12] David Baqaee, Emmanuel Farhi, Nonlinear production networks with an application to the Covid-19 crisis, NBER Working Paper No w27281, May 2020

[13] V.M. Carvalho, A. Tahbaz-Salehi, “Production networks: A primer”, Annual Review of Economics, 11 (2019), 635–663 | DOI

[14] A.A. Shananin, “Young duality and aggregation of balances”, Dokl. Math., 102:1 (2020), 330–333 | DOI | MR | Zbl

[15] A.A. Shananin, “Problem of aggregating of an input-output model and duality”, Comput. Math. Math. Phys., 61:1 (2021), 153–166 | DOI | MR | Zbl

[16] S. Boranbayev, N. Obrosova, A. Shananin, “Production network centrality in connection to economic development by the case of Kazakhstan statistics”, LNCS, 13078, Springer, Cham, 2021, 321–335 | MR

[17] N. Obrosova, A. Shananin, A. Spiridonov, “On the comparison of two approaches to intersectoral balance analysis”, J. Phys.: Conf. Ser., 2131:2 (2021), 022112 | DOI

[18] A.V. Rassokha, A.A. Shananin, “Inverse problems of analysis of input-output balances”, Math. Models Comput. Simul., 13:6 (2021), 943–954 | DOI | MR

[19] A.A. Shananin, A.V. Rassokha, “Inverse problems in analysis of input-output model in the class of CES functions”, J. Inverse Ill-Posed Probl., 29:2 (2021), 305–316 | DOI | MR | Zbl

[20] A.A. Shananin, “Duality for generalized programming problems and variational principles in models of economic equilibrium”, Dokl. Math., 59:3 (1999), 432–434 | MR | Zbl

[21] P.B. Dixon, D.W. Jorgenson (eds.), Handbook of computable general equilibrium modeling, Elsevier, Amsterdam, 2013 | Zbl