Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a45, author = {Ivan Kuznetsov and Sergey Sazhenkov}, title = {The one-dimensional impulsive {Barenblatt--Zheltov--Kochina} equation with a transition layer}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {724--740}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a45/} }
TY - JOUR AU - Ivan Kuznetsov AU - Sergey Sazhenkov TI - The one-dimensional impulsive Barenblatt--Zheltov--Kochina equation with a transition layer JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 724 EP - 740 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a45/ LA - en ID - SEMR_2022_19_2_a45 ER -
%0 Journal Article %A Ivan Kuznetsov %A Sergey Sazhenkov %T The one-dimensional impulsive Barenblatt--Zheltov--Kochina equation with a transition layer %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 724-740 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a45/ %G en %F SEMR_2022_19_2_a45
Ivan Kuznetsov; Sergey Sazhenkov. The one-dimensional impulsive Barenblatt--Zheltov--Kochina equation with a transition layer. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 724-740. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a45/
[1] R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in differential equations, Springer, Cham, 2017 | MR | Zbl
[2] A.B. Al'shin, M.O. Korpusov, A.G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, Series in Nonlinear Analysis and Applications, 15, De Gruyter, Berlin, 2011 | MR | Zbl
[3] S. Antontsev, I. Kuznetsov, S. Sazhenkov, “A shock layer arising as the source term collapses in the $p(\boldsymbol{x})$-Laplacian equation”, Probl. Anal. Issues Anal., 9(27):3 (2020), 31–53 | DOI | MR | Zbl
[4] J.-P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci., Paris, 256 (1963), 5042–5044 | MR | Zbl
[5] D. Bainov, P. Simeonov, Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 66, Longman, Harlow, 1993 | MR | Zbl
[6] D. Bainov, V. Covachev, Impulsive differential equations with a small parameter, Series on Advances in Mathematics for Applied Sciences, 24, World Scientific, Singapore, 1995 | DOI | MR | Zbl
[7] D. Bainov, P. Simeonov, Impulsive differential equations. Asymptotic properties of the solutions, Series on Advances in Mathematics for Applied Sciences, 28, World Scientific, Singapore, 1995 | DOI | MR | Zbl
[8] G. Barenblatt, Yu. Zheltov, I. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)”, PMM J. Appl. Math. Mech., 24 (1961), 1286–1303 | DOI | Zbl
[9] G.I. Barenblatt, M. Bertsch, R. Dal Passo, M. Ughi, “A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow”, SIAM J. Math. Anal., 24:6 (1993), 1414–1439 | DOI | MR | Zbl
[10] Y. Cao, C. Liu, “Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity”, Electron. J. Differ. Equ., 2018 (2018), 116 | DOI | MR | Zbl
[11] P.J. Chen, M.E. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl
[12] X. Chen, A. Jüngel, J.-G. Liu, “A note on Aubin-Lions-Dubinskii lemmas”, Acta Appl. Math., 133:1 (2014), 33–43 | DOI | MR | Zbl
[13] F.A.B. Coutinho, Y. Nogami, F.M. Toyama, “Unusual situations that arise with the Dirac delta function and its derivative”, Revista Brasileira de Ensino de Física, 31:4 (2009), 4302 | DOI | MR
[14] G.V. Demidenko, S.V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, New York, 2003 | MR | Zbl
[15] P. Feketa, V. Klinshov, L. Lücken, “A survey on the modeling of hybrid behaviors: how to account for impulsive jumps properly”, Commun. Nonlinear Sci. Numer. Simulat., 103 (2021), 105955 | DOI | MR | Zbl
[16] A.F. Filippov, Differential equations with discontinuous right-hand sides, Kluwer Academic Publishers, Dordrecht etc, 1988 | MR | Zbl
[17] D. Griffiths, S. Walborn, “Dirac deltas and discontinuous functions”, Am. J. Phys., 67:5 (1999), 446–447 | DOI | MR | Zbl
[18] V. Klinshov, L. Lücken, P. Feketa, “On the interpretation of Dirac $\delta$ pulses in differential equations for phase oscillators”, Chaos, 31:3 (2021), 031102 | DOI | MR | Zbl
[19] C. Kuehn, Multiple time scale dynamics, Springer, Cham, 2015 | MR | Zbl
[20] J. Kurzweil, “Generalized ordinary differential equations”, Czech. Math. J., 8 (1958), 360–388 | DOI | MR | Zbl
[21] I. Kuznetsov, S. Sazhenkov, “Strong solutions of impulsive pseudoparabolic equations”, Nonlinear Anal. RWA, 65:2022, 103509 | MR | Zbl
[22] V. Lakshmikantham, D.D. Bajnov, P.S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore etc, 1989 | MR | Zbl
[23] V. Lakshmikantham, M. Rama, Theory of integro-differential equations, Stability and Control: Theory, Methods and Applications, 1, Gordon and Breach Science Publishers, Philadelphia, 1995 | MR | Zbl
[24] J.L. Lions, Équations différentielles opérationelles et problèmes aux limites, Springer, Berlin etc, 1961 | MR | Zbl
[25] J.L. Lions, Quelque méthodes de résolution des problèmes aux limites non linéaires, Gauthiers-Villars, Paris, 1969 | MR | Zbl
[26] J. Málek, J. Nečas, J. Rokyta, M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, Chapman Hall, London, 1996 | MR | Zbl
[27] B.M. Miller, E.Ya. Rubinovich, Impulsive control in continuous and discrete-continuous systems, Kluwer Academic/Plenum Publishers, New York, 2003 | MR | Zbl
[28] A.H. Nayfeh, Perturbation methods, Wiley, New York, 2000 | MR | Zbl
[29] M. Nedeljkov, M. Oberguggenberger, “Ordinary differential equations with delta function terms”, Publ. Inst. Math., Nouv. Sér., 91:105 (2012), 125–135 | DOI | MR | Zbl
[30] A. Novick-Cohen, R.L. Pego, “Stable patterns in a viscous diffusion equation”, Trans. AMS, 324:1 (1991), 331–351 | DOI | MR | Zbl
[31] P.I. Plotnikov, “Forward-backward parabolic equations and hysteresis”, J. Math. Sci., New York, 93:5 (1999), 747–766 | DOI | MR | Zbl
[32] R. Rossi, G. Savaré, “Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces”, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 2:2 (2003), 395–431 | MR | Zbl
[33] A.M. Samoilenko, N.A. Perestyuk, Impulsive differential equations, World Scientific Series on Nonlinear Science Series A, 14, World Scientific, Singapore, 1995 | DOI | MR | Zbl
[34] S. Schlüter, S. Berg, T. Li, H.-J. Vogel, D. Wildenschild, “Time scales of relaxation dynamics during transient conditions in two-phase flow”, Water Resour. Res., 53:6 (2017), 4709–4724 | DOI
[35] S̆. Schwabik, Generalized ordinary differential equations, Series in Real Analysis, 5, World Scientific, Singapore, 1992 | MR | Zbl
[36] R.E. Showalter, T.W. Ting, “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1:1 (1970), 1–26 | DOI | MR | Zbl
[37] R.E. Showalter, Hilbert space methods for partial differential equations, Pitman, London etc, 1977 | MR | Zbl
[38] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl., IV. Ser., 146 (1987), 65–96 | DOI | MR | Zbl
[39] F. Smarrazzo, A. Tesei, Measure theory and nonlinear evolution equations, De Gruyter Studies in Mathematics, 86, De Gruyter, Berlin, 2022 | MR | Zbl
[40] G.T. Stamov, Almost periodic solutions of impulsive differential equations, Springer-Verlag, Berlin, 2012 | MR | Zbl
[41] V.N. Starovoitov, “Initial boundary value problem for a nonlocal in time parabolic equation”, Sib. Èlektron. Mat. Izv., 15 (2018), 1311–1319 | MR | Zbl
[42] V.N. Starovoitov, “Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1714–1719 | DOI | MR | Zbl
[43] T.W. Ting, “Certain non-steady flows of second-order fluids”, Arch. Ration. Mech. Anal., 14 (1963), 1–26 | DOI | MR | Zbl
[44] A. Vasseur, “Well-posedness of scalar conservation laws with singular sources”, Methods Appl. Anal., 9:2 (2002), 291–312 | DOI | MR | Zbl
[45] F. Verhulst, Methods and applications of singular perturbations. Boundary layers and multiple timescale dynamics, Texts in Applied Mathematics, 50, Springer, New York, 2005 | DOI | MR | Zbl
[46] J. Wang, M. Fečkan, Non-instantaneous impulsive differential rquations. Basic theory and computation, IOP Publishing, 2018
[47] T.K. Yuldashev, “Generalized solution of mixed value problem for a linear integro-differential equation with pseudoparabolic operator of higher power”, Math. Phys. Comp. Simulation, 21:4 (2018), 34–43 | DOI | MR