The one-dimensional impulsive Barenblatt--Zheltov--Kochina equation with a transition layer
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 724-740.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary value problem for the one-dimensional impulsive pseudoparabolic equation is studied. As a coefficient in the second-order diffusion term, this equation contains the smoothed Dirac delta-function concentrated at some time moment. From a physical viewpoint, such term allows to describe impulsive pressure drop phenomena in filtration problems. Existence and uniqueness of solutions for fixed values of the small parameter of smoothing is proved. After this, the limiting passage as the small parameter tends to zero is fulfilled and rigorously justified. As the result, the limit instantaneous impulsive microscopic-macroscopic model is established. This model is well-posed and involves the additional equation on a transition layer posed on a ‘very fast’ timescale.
Keywords: impulsive equation, strong solution, Fourier series, transition layer.
Mots-clés : pseudoparabolic equation
@article{SEMR_2022_19_2_a45,
     author = {Ivan Kuznetsov and Sergey Sazhenkov},
     title = {The one-dimensional impulsive {Barenblatt--Zheltov--Kochina} equation with a transition layer},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {724--740},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a45/}
}
TY  - JOUR
AU  - Ivan Kuznetsov
AU  - Sergey Sazhenkov
TI  - The one-dimensional impulsive Barenblatt--Zheltov--Kochina equation with a transition layer
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 724
EP  - 740
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a45/
LA  - en
ID  - SEMR_2022_19_2_a45
ER  - 
%0 Journal Article
%A Ivan Kuznetsov
%A Sergey Sazhenkov
%T The one-dimensional impulsive Barenblatt--Zheltov--Kochina equation with a transition layer
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 724-740
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a45/
%G en
%F SEMR_2022_19_2_a45
Ivan Kuznetsov; Sergey Sazhenkov. The one-dimensional impulsive Barenblatt--Zheltov--Kochina equation with a transition layer. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 724-740. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a45/

[1] R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in differential equations, Springer, Cham, 2017 | MR | Zbl

[2] A.B. Al'shin, M.O. Korpusov, A.G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, Series in Nonlinear Analysis and Applications, 15, De Gruyter, Berlin, 2011 | MR | Zbl

[3] S. Antontsev, I. Kuznetsov, S. Sazhenkov, “A shock layer arising as the source term collapses in the $p(\boldsymbol{x})$-Laplacian equation”, Probl. Anal. Issues Anal., 9(27):3 (2020), 31–53 | DOI | MR | Zbl

[4] J.-P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci., Paris, 256 (1963), 5042–5044 | MR | Zbl

[5] D. Bainov, P. Simeonov, Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 66, Longman, Harlow, 1993 | MR | Zbl

[6] D. Bainov, V. Covachev, Impulsive differential equations with a small parameter, Series on Advances in Mathematics for Applied Sciences, 24, World Scientific, Singapore, 1995 | DOI | MR | Zbl

[7] D. Bainov, P. Simeonov, Impulsive differential equations. Asymptotic properties of the solutions, Series on Advances in Mathematics for Applied Sciences, 28, World Scientific, Singapore, 1995 | DOI | MR | Zbl

[8] G. Barenblatt, Yu. Zheltov, I. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)”, PMM J. Appl. Math. Mech., 24 (1961), 1286–1303 | DOI | Zbl

[9] G.I. Barenblatt, M. Bertsch, R. Dal Passo, M. Ughi, “A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow”, SIAM J. Math. Anal., 24:6 (1993), 1414–1439 | DOI | MR | Zbl

[10] Y. Cao, C. Liu, “Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity”, Electron. J. Differ. Equ., 2018 (2018), 116 | DOI | MR | Zbl

[11] P.J. Chen, M.E. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl

[12] X. Chen, A. Jüngel, J.-G. Liu, “A note on Aubin-Lions-Dubinskii lemmas”, Acta Appl. Math., 133:1 (2014), 33–43 | DOI | MR | Zbl

[13] F.A.B. Coutinho, Y. Nogami, F.M. Toyama, “Unusual situations that arise with the Dirac delta function and its derivative”, Revista Brasileira de Ensino de Física, 31:4 (2009), 4302 | DOI | MR

[14] G.V. Demidenko, S.V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, New York, 2003 | MR | Zbl

[15] P. Feketa, V. Klinshov, L. Lücken, “A survey on the modeling of hybrid behaviors: how to account for impulsive jumps properly”, Commun. Nonlinear Sci. Numer. Simulat., 103 (2021), 105955 | DOI | MR | Zbl

[16] A.F. Filippov, Differential equations with discontinuous right-hand sides, Kluwer Academic Publishers, Dordrecht etc, 1988 | MR | Zbl

[17] D. Griffiths, S. Walborn, “Dirac deltas and discontinuous functions”, Am. J. Phys., 67:5 (1999), 446–447 | DOI | MR | Zbl

[18] V. Klinshov, L. Lücken, P. Feketa, “On the interpretation of Dirac $\delta$ pulses in differential equations for phase oscillators”, Chaos, 31:3 (2021), 031102 | DOI | MR | Zbl

[19] C. Kuehn, Multiple time scale dynamics, Springer, Cham, 2015 | MR | Zbl

[20] J. Kurzweil, “Generalized ordinary differential equations”, Czech. Math. J., 8 (1958), 360–388 | DOI | MR | Zbl

[21] I. Kuznetsov, S. Sazhenkov, “Strong solutions of impulsive pseudoparabolic equations”, Nonlinear Anal. RWA, 65:2022, 103509 | MR | Zbl

[22] V. Lakshmikantham, D.D. Bajnov, P.S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore etc, 1989 | MR | Zbl

[23] V. Lakshmikantham, M. Rama, Theory of integro-differential equations, Stability and Control: Theory, Methods and Applications, 1, Gordon and Breach Science Publishers, Philadelphia, 1995 | MR | Zbl

[24] J.L. Lions, Équations différentielles opérationelles et problèmes aux limites, Springer, Berlin etc, 1961 | MR | Zbl

[25] J.L. Lions, Quelque méthodes de résolution des problèmes aux limites non linéaires, Gauthiers-Villars, Paris, 1969 | MR | Zbl

[26] J. Málek, J. Nečas, J. Rokyta, M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, Chapman Hall, London, 1996 | MR | Zbl

[27] B.M. Miller, E.Ya. Rubinovich, Impulsive control in continuous and discrete-continuous systems, Kluwer Academic/Plenum Publishers, New York, 2003 | MR | Zbl

[28] A.H. Nayfeh, Perturbation methods, Wiley, New York, 2000 | MR | Zbl

[29] M. Nedeljkov, M. Oberguggenberger, “Ordinary differential equations with delta function terms”, Publ. Inst. Math., Nouv. Sér., 91:105 (2012), 125–135 | DOI | MR | Zbl

[30] A. Novick-Cohen, R.L. Pego, “Stable patterns in a viscous diffusion equation”, Trans. AMS, 324:1 (1991), 331–351 | DOI | MR | Zbl

[31] P.I. Plotnikov, “Forward-backward parabolic equations and hysteresis”, J. Math. Sci., New York, 93:5 (1999), 747–766 | DOI | MR | Zbl

[32] R. Rossi, G. Savaré, “Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces”, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 2:2 (2003), 395–431 | MR | Zbl

[33] A.M. Samoilenko, N.A. Perestyuk, Impulsive differential equations, World Scientific Series on Nonlinear Science Series A, 14, World Scientific, Singapore, 1995 | DOI | MR | Zbl

[34] S. Schlüter, S. Berg, T. Li, H.-J. Vogel, D. Wildenschild, “Time scales of relaxation dynamics during transient conditions in two-phase flow”, Water Resour. Res., 53:6 (2017), 4709–4724 | DOI

[35] S̆. Schwabik, Generalized ordinary differential equations, Series in Real Analysis, 5, World Scientific, Singapore, 1992 | MR | Zbl

[36] R.E. Showalter, T.W. Ting, “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1:1 (1970), 1–26 | DOI | MR | Zbl

[37] R.E. Showalter, Hilbert space methods for partial differential equations, Pitman, London etc, 1977 | MR | Zbl

[38] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl., IV. Ser., 146 (1987), 65–96 | DOI | MR | Zbl

[39] F. Smarrazzo, A. Tesei, Measure theory and nonlinear evolution equations, De Gruyter Studies in Mathematics, 86, De Gruyter, Berlin, 2022 | MR | Zbl

[40] G.T. Stamov, Almost periodic solutions of impulsive differential equations, Springer-Verlag, Berlin, 2012 | MR | Zbl

[41] V.N. Starovoitov, “Initial boundary value problem for a nonlocal in time parabolic equation”, Sib. Èlektron. Mat. Izv., 15 (2018), 1311–1319 | MR | Zbl

[42] V.N. Starovoitov, “Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1714–1719 | DOI | MR | Zbl

[43] T.W. Ting, “Certain non-steady flows of second-order fluids”, Arch. Ration. Mech. Anal., 14 (1963), 1–26 | DOI | MR | Zbl

[44] A. Vasseur, “Well-posedness of scalar conservation laws with singular sources”, Methods Appl. Anal., 9:2 (2002), 291–312 | DOI | MR | Zbl

[45] F. Verhulst, Methods and applications of singular perturbations. Boundary layers and multiple timescale dynamics, Texts in Applied Mathematics, 50, Springer, New York, 2005 | DOI | MR | Zbl

[46] J. Wang, M. Fečkan, Non-instantaneous impulsive differential rquations. Basic theory and computation, IOP Publishing, 2018

[47] T.K. Yuldashev, “Generalized solution of mixed value problem for a linear integro-differential equation with pseudoparabolic operator of higher power”, Math. Phys. Comp. Simulation, 21:4 (2018), 34–43 | DOI | MR