Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a44, author = {A. I. Zadorin}, title = {Two-dimensional interpolation of functions with large gradients in boundary layers}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {688--697}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a44/} }
TY - JOUR AU - A. I. Zadorin TI - Two-dimensional interpolation of functions with large gradients in boundary layers JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 688 EP - 697 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a44/ LA - en ID - SEMR_2022_19_2_a44 ER -
A. I. Zadorin. Two-dimensional interpolation of functions with large gradients in boundary layers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 688-697. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a44/
[1] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | Zbl
[2] A.M. Il'in, “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Math. Notes, 6:2 (1970), 596–602 | DOI | Zbl
[3] N.S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer”, USSR Comput. Math. Math. Phys., 9:4 (1969), 139–166 | DOI | MR | Zbl
[4] G.I. Shishkin, Grid approximations of singularly perturbed elliptic and parabolic equations, Russian Academy of Sciences, Ural Branch, Ekaterinburg, 1992 | Zbl
[5] A.I. Zadorin, N.A. Zadorin, “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Comput. Math. Math. Phys., 50:2 (2010), 211–223 | DOI | MR | Zbl
[6] A.I. Zadorin, N.A. Zadorin, “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sib. Èlectron. Math. Izv., 9 (2012), 445–455 | MR | Zbl
[7] A.I. Zadorin, N.A. Zadorin, “Non-polynomial interpolation of functions with large gradients and its application”, Comput. Math. Math. Phys., 61:2 (2021), 167–176 | DOI | MR | Zbl
[8] A.I. Zadorin, “Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numer. Anal. Appl., 8:3 (2015), 235–247 | DOI | MR | Zbl
[9] A.I. Zadorin, N.A. Zadorin, “Lagrange interpolation and the Newton-Cotes formulas on a Bakhvalov mesh in the presence of a boundary layer”, Comput. Math. Math. Phys., 62:3 (2022), 347–358 | DOI | MR | Zbl
[10] A.I. Zadorin, “Interpolation of the function of two variables with large gradients in boundary layers”, Lobachevskii J. Math., 37:3 (2016), 349–359 | DOI | MR | Zbl
[11] A.I. Zadorin, N.A. Zadorin, “Polynomial interpolation of the function of two variables with large gradients in the boundary layers”, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 158:1 (2016), 40–50 | MR
[12] T. Linß, M. Stynes, “Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem”, J. Math. Anal. Appl., 261:2 (2001), 604–632 | DOI | MR | Zbl
[13] H.G. Roos, “Layer-adapted meshes: milestones in 50 years of history”, Appl. Math., 2019, arXiv: 1909.08273v1