Two-dimensional interpolation of functions with large gradients in boundary layers
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 688-697.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of interpolation of a function of two variables with large gradients in the regions of the boundary layer is considered. The interpolated function has a representation as a sum of regular and boundary layer components. Such the representation is valid due to the Shishkin decomposition for the solution of the singularly perturbed problem. The development of interpolation formulas for such functions is relevant, since in the case of a uniform grid the error can be of the order of $O(1).$ In the rectangular domain a Bakhvalov mesh is applied, which condenses in the boundary layers. The initial domain is divided into rectangular cells. In each such cell, two-dimensional interpolation based on the Lagrange polynomial is applied. The interpolation formula contains $k$ interpolation nodes in each direction. For each cell, an error estimate is obtained taking into account uniformity in a small parameter. An estimate of the stability of the interpolation formula is obtained on a two-dimensional grid from the class of Bakhvalov grids. The results of numerical experiments are consistent with the obtained error estimates. The study of the interpolation formula is necessary to continue the solution of the difference scheme from the grid nodes to the entire original domain.
Keywords: function of two variables, exponential boundary layer, Bakhvalov mesh, error estimate.
Mots-clés : Lagrange polynomial
@article{SEMR_2022_19_2_a44,
     author = {A. I. Zadorin},
     title = {Two-dimensional interpolation of functions with large gradients in boundary layers},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {688--697},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a44/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Two-dimensional interpolation of functions with large gradients in boundary layers
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 688
EP  - 697
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a44/
LA  - en
ID  - SEMR_2022_19_2_a44
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Two-dimensional interpolation of functions with large gradients in boundary layers
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 688-697
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a44/
%G en
%F SEMR_2022_19_2_a44
A. I. Zadorin. Two-dimensional interpolation of functions with large gradients in boundary layers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 688-697. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a44/

[1] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | Zbl

[2] A.M. Il'in, “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Math. Notes, 6:2 (1970), 596–602 | DOI | Zbl

[3] N.S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer”, USSR Comput. Math. Math. Phys., 9:4 (1969), 139–166 | DOI | MR | Zbl

[4] G.I. Shishkin, Grid approximations of singularly perturbed elliptic and parabolic equations, Russian Academy of Sciences, Ural Branch, Ekaterinburg, 1992 | Zbl

[5] A.I. Zadorin, N.A. Zadorin, “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Comput. Math. Math. Phys., 50:2 (2010), 211–223 | DOI | MR | Zbl

[6] A.I. Zadorin, N.A. Zadorin, “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sib. Èlectron. Math. Izv., 9 (2012), 445–455 | MR | Zbl

[7] A.I. Zadorin, N.A. Zadorin, “Non-polynomial interpolation of functions with large gradients and its application”, Comput. Math. Math. Phys., 61:2 (2021), 167–176 | DOI | MR | Zbl

[8] A.I. Zadorin, “Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numer. Anal. Appl., 8:3 (2015), 235–247 | DOI | MR | Zbl

[9] A.I. Zadorin, N.A. Zadorin, “Lagrange interpolation and the Newton-Cotes formulas on a Bakhvalov mesh in the presence of a boundary layer”, Comput. Math. Math. Phys., 62:3 (2022), 347–358 | DOI | MR | Zbl

[10] A.I. Zadorin, “Interpolation of the function of two variables with large gradients in boundary layers”, Lobachevskii J. Math., 37:3 (2016), 349–359 | DOI | MR | Zbl

[11] A.I. Zadorin, N.A. Zadorin, “Polynomial interpolation of the function of two variables with large gradients in the boundary layers”, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 158:1 (2016), 40–50 | MR

[12] T. Linß, M. Stynes, “Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem”, J. Math. Anal. Appl., 261:2 (2001), 604–632 | DOI | MR | Zbl

[13] H.G. Roos, “Layer-adapted meshes: milestones in 50 years of history”, Appl. Math., 2019, arXiv: 1909.08273v1