On integral properties of stationary measures for the stochastic system of the Lorenz model describing a baroclinic atmosphere
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 984-1014.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with a nonlinear system of partial differential equations with parameters which describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. We give some upper bounds and a lower bound for some moments of these measures in terms of the set of parameters, an external force and numerical characteristics of white noise. These bounds show, in particular, that these moments are finite. We will prove a number of integral equalities, which can be considered as laws of conservation of these stationary measures. Under certain conditions, these estimates and equalities do not depend on the coefficient of kinematic viscosity $\nu>0$, which leads to the possibility of passing to the limit as $\nu \to 0$ and studing with their help the properties of limiting measures, which will be done in subsequent work. As it is well known, the coefficient of kinematic viscosity $\nu$ in practice is extremely small. In addition, these results are obtained for one similar baroclinic atmosphere system and the barotropic atmosphere equation.
Keywords: the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere, integral properties of stationary measures.
Mots-clés : white noise perturbation
@article{SEMR_2022_19_2_a41,
     author = {Yu. Yu. Klevtsova},
     title = {On integral properties of stationary measures for the stochastic system of the {Lorenz} model describing a baroclinic atmosphere},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {984--1014},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a41/}
}
TY  - JOUR
AU  - Yu. Yu. Klevtsova
TI  - On integral properties of stationary measures for the stochastic system of the Lorenz model describing a baroclinic atmosphere
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 984
EP  - 1014
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a41/
LA  - ru
ID  - SEMR_2022_19_2_a41
ER  - 
%0 Journal Article
%A Yu. Yu. Klevtsova
%T On integral properties of stationary measures for the stochastic system of the Lorenz model describing a baroclinic atmosphere
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 984-1014
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a41/
%G ru
%F SEMR_2022_19_2_a41
Yu. Yu. Klevtsova. On integral properties of stationary measures for the stochastic system of the Lorenz model describing a baroclinic atmosphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 984-1014. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a41/

[1] Yu.Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517 | DOI | MR | Zbl

[2] Yu.Yu. Klevtsova, “On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 204:9 (2013), 1307–1331 | DOI | MR | Zbl

[3] Yu.Yu. Klevtsova, “The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 206:3 (2015), 421–469 | DOI | MR | Zbl

[4] Yu.Yu. Klevtsova, “On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 208:7 (2017), 929–976 | DOI | MR | Zbl

[5] B.V. Pal'tsev, Spherical functions, A textbook, MFTI, M., 2000

[6] V.P. Dymnikov, Stability and predictability of large-scale atmospheric processes, Institute for Numerical Mathematics, Russian Academy of Sciences, M., 2007

[7] Yu.N. Skiba, Mathematical problems on the dynamics of viscous barotropic fluid on a rotating sphere, Indian Institute of Tropical Meteorology, Pune, INDIA, 1990

[8] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge etc., 1992 | MR | Zbl

[9] S.G. Mikhlin, Linear partial differential equations, Vysshaya Shkola, M., 1977 | MR

[10] S.G. Mikhlin, Multidimensional singular integrals and integral equations, Pergamon Press, Oxford etc, 1965 | MR | Zbl

[11] V.N. Krupchatnikov, G.P. Kurbatkin, Modelling large-scale dynamics of the atmosphere. Methods for diagnosing the general circulation, Computer Centre, Siberian Branch of the USSR Academy of Sciences, Novosibirsk, 1991

[12] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[13] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin etc., 1965 | MR | Zbl

[14] Yu.N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam etc., 1981 | MR | Zbl

[16] A.N. Shiryaev, Probability, third ed., Moscow Center for Continuous Mathematical Education, M., 2004 ; Springer, Cham, 2019 | MR | Zbl

[17] N. Dunford, J.T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York–London, 1958 | MR | Zbl

[18] P. Billingsley, Convergence of probability mesures, Wiley, New York etc, 1968 | MR | Zbl

[19] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964 | MR | Zbl

[20] A.V. Bulinski, A.N. Shiryaev, Theory of random processes, Fizmatlit, M., 2005

[21] N.N. Vakhania, V.I. Tarieladze, S.A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl

[22] A.D. Wentzel', A course in the theory of stochastic processes, 2nd ed., Nauka, M., 1996 | MR | Zbl

[23] V.M. Kadets, A course in functional analysis, Khar'kovskij Natsional'nyj Universitet Im. V. N. Karazina, Khar'kov, 2006 | MR | Zbl

[24] A.N. Kolmogorov, S.V. Fomin, Elements of the theory of functions and functional analysis, 7th ed., Fizmatlit, M., 2004 ; 1989 | MR | Zbl

[25] V.P. Dymnikov, A.N. Filatov, Mathematics of climate modeling, Birkhäuser, Boston, 1997 | MR | Zbl

[26] A.S. Gorelov, “The dimension of an attractor of a two-layer baroclinic model”, Dokl. Akad. Nauk, 342:1 (1995), 101–104 | MR

[27] S. Kuksin, A. Maiocchi, “The limit of small Rossby numbers for randomly forced quasi-geostrophic equation on $\beta$-plane”, Nonlinearity, 28:7 (2015), 2319–2341 | DOI | MR | Zbl