Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a41, author = {Yu. Yu. Klevtsova}, title = {On integral properties of stationary measures for the stochastic system of the {Lorenz} model describing a baroclinic atmosphere}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {984--1014}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a41/} }
TY - JOUR AU - Yu. Yu. Klevtsova TI - On integral properties of stationary measures for the stochastic system of the Lorenz model describing a baroclinic atmosphere JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 984 EP - 1014 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a41/ LA - ru ID - SEMR_2022_19_2_a41 ER -
%0 Journal Article %A Yu. Yu. Klevtsova %T On integral properties of stationary measures for the stochastic system of the Lorenz model describing a baroclinic atmosphere %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 984-1014 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a41/ %G ru %F SEMR_2022_19_2_a41
Yu. Yu. Klevtsova. On integral properties of stationary measures for the stochastic system of the Lorenz model describing a baroclinic atmosphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 984-1014. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a41/
[1] Yu.Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517 | DOI | MR | Zbl
[2] Yu.Yu. Klevtsova, “On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 204:9 (2013), 1307–1331 | DOI | MR | Zbl
[3] Yu.Yu. Klevtsova, “The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 206:3 (2015), 421–469 | DOI | MR | Zbl
[4] Yu.Yu. Klevtsova, “On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 208:7 (2017), 929–976 | DOI | MR | Zbl
[5] B.V. Pal'tsev, Spherical functions, A textbook, MFTI, M., 2000
[6] V.P. Dymnikov, Stability and predictability of large-scale atmospheric processes, Institute for Numerical Mathematics, Russian Academy of Sciences, M., 2007
[7] Yu.N. Skiba, Mathematical problems on the dynamics of viscous barotropic fluid on a rotating sphere, Indian Institute of Tropical Meteorology, Pune, INDIA, 1990
[8] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge etc., 1992 | MR | Zbl
[9] S.G. Mikhlin, Linear partial differential equations, Vysshaya Shkola, M., 1977 | MR
[10] S.G. Mikhlin, Multidimensional singular integrals and integral equations, Pergamon Press, Oxford etc, 1965 | MR | Zbl
[11] V.N. Krupchatnikov, G.P. Kurbatkin, Modelling large-scale dynamics of the atmosphere. Methods for diagnosing the general circulation, Computer Centre, Siberian Branch of the USSR Academy of Sciences, Novosibirsk, 1991
[12] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl
[13] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin etc., 1965 | MR | Zbl
[14] Yu.N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam etc., 1981 | MR | Zbl
[16] A.N. Shiryaev, Probability, third ed., Moscow Center for Continuous Mathematical Education, M., 2004 ; Springer, Cham, 2019 | MR | Zbl
[17] N. Dunford, J.T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York–London, 1958 | MR | Zbl
[18] P. Billingsley, Convergence of probability mesures, Wiley, New York etc, 1968 | MR | Zbl
[19] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964 | MR | Zbl
[20] A.V. Bulinski, A.N. Shiryaev, Theory of random processes, Fizmatlit, M., 2005
[21] N.N. Vakhania, V.I. Tarieladze, S.A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl
[22] A.D. Wentzel', A course in the theory of stochastic processes, 2nd ed., Nauka, M., 1996 | MR | Zbl
[23] V.M. Kadets, A course in functional analysis, Khar'kovskij Natsional'nyj Universitet Im. V. N. Karazina, Khar'kov, 2006 | MR | Zbl
[24] A.N. Kolmogorov, S.V. Fomin, Elements of the theory of functions and functional analysis, 7th ed., Fizmatlit, M., 2004 ; 1989 | MR | Zbl
[25] V.P. Dymnikov, A.N. Filatov, Mathematics of climate modeling, Birkhäuser, Boston, 1997 | MR | Zbl
[26] A.S. Gorelov, “The dimension of an attractor of a two-layer baroclinic model”, Dokl. Akad. Nauk, 342:1 (1995), 101–104 | MR
[27] S. Kuksin, A. Maiocchi, “The limit of small Rossby numbers for randomly forced quasi-geostrophic equation on $\beta$-plane”, Nonlinearity, 28:7 (2015), 2319–2341 | DOI | MR | Zbl