Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a40, author = {A. E. Mamontov and D. A. Prokudin}, title = {Stationary solutions of a boundary value problem for equations of barotropic flow of multicomponent media}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {959--971}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a40/} }
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Stationary solutions of a boundary value problem for equations of barotropic flow of multicomponent media JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 959 EP - 971 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a40/ LA - ru ID - SEMR_2022_19_2_a40 ER -
%0 Journal Article %A A. E. Mamontov %A D. A. Prokudin %T Stationary solutions of a boundary value problem for equations of barotropic flow of multicomponent media %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 959-971 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a40/ %G ru %F SEMR_2022_19_2_a40
A. E. Mamontov; D. A. Prokudin. Stationary solutions of a boundary value problem for equations of barotropic flow of multicomponent media. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 959-971. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a40/
[1] A.M. Blokhin, V.N. Dorovskii, Problems of mathematical modeling in the theory of a multivelocity continuum, Nauka, Novosibirsk, 1994 | MR
[2] R. Coifman, Y. Meyer, “On commutators of singular integrals and bilinear singular integrals”, Trans. Am. Math. Soc., 212 (1975), 315–331 | DOI | MR | Zbl
[3] V.N. Dorovskii, Yu.V. Perepechko, “Phenomenological description of two-velocity media with relaxing shear stresses”, J. Appl. Mech. Tech. Phys., 33:3 (1992), 403–409 | DOI
[4] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel, 2009 | MR | Zbl
[5] J. Frehse, S. Goj, J. Málek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl
[6] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., Praha, 53:4 (2008), 319–345 | DOI | MR | Zbl
[7] P.-L. Lions, Mathematical topics in fluid mechanics, v. 2, Compressible models, Clarendon Press, Oxford, 1998 | MR | Zbl
[8] A.E. Mamontov, D.A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods Appl. Anal., 20:2 (2013), 179–196 | DOI | MR | Zbl
[9] A.E. Mamontov, D.A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sib. Èlectron. Mat. Izv., 13 (2016), 664–693 | MR | Zbl
[10] A.E. Mamontov, D.A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Sib. Math. J., 57:6 (2016), 1044–1054 | DOI | MR | Zbl
[11] R.I. Nigmatulin, Dynamics of multiphase media, v. 1, Hemisphere, New York, 1990
[12] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR
[13] K.L. Rajagopal, L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 35, World Scientific, Singapore, 1995 | MR | Zbl
[14] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics, Heriot-Watt Symp. (Edinburgh 1979), v. 4, Res. Notes Math., 39, Pitman, Boston etc., 1979, 136–212 | MR | Zbl