Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 935-948

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of two-dimensional elasticity theory, a heterogeneous body with a narrow inclusion lying strictly inside the body is considered. It is assumed that the elastic properties of inclusion and its width depend on the small parameter $\delta>0$. Moreover, we assume that the inclusion has a curvilinear rough boundary. We show that there exist three type of limiting problem as $\delta\to0$: $p>1$ – body with crack without interaction of its faces; $p=1$ – body with crack with adhesive interaction of its faces; $p\in[0,1)$ – homogeneous body (no crack).
Keywords: asymptotic analysis, inhomogeneous elastic body, narrow inclusion, curvilinear crack
Mots-clés : interface conditions.
@article{SEMR_2022_19_2_a39,
     author = {I. V. Fankina and A. I. Furtsev and E. M. Rudoy and S. A. Sazhenkov},
     title = {Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {935--948},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/}
}
TY  - JOUR
AU  - I. V. Fankina
AU  - A. I. Furtsev
AU  - E. M. Rudoy
AU  - S. A. Sazhenkov
TI  - Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 935
EP  - 948
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/
LA  - en
ID  - SEMR_2022_19_2_a39
ER  - 
%0 Journal Article
%A I. V. Fankina
%A A. I. Furtsev
%A E. M. Rudoy
%A S. A. Sazhenkov
%T Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 935-948
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/
%G en
%F SEMR_2022_19_2_a39
I. V. Fankina; A. I. Furtsev; E. M. Rudoy; S. A. Sazhenkov. Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 935-948. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/