Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 935-948
Voir la notice de l'article provenant de la source Math-Net.Ru
Within the framework of two-dimensional elasticity theory, a heterogeneous body with a narrow inclusion lying strictly inside the body is considered. It is assumed that the elastic properties of inclusion and its width depend on the small parameter $\delta>0$. Moreover, we assume that the inclusion has a curvilinear rough boundary. We show that there exist three type of limiting problem as $\delta\to0$: $p>1$ – body with crack without interaction of its faces; $p=1$ – body with crack with adhesive interaction of its faces; $p\in[0,1)$ – homogeneous body (no crack).
Keywords:
asymptotic analysis, inhomogeneous elastic body, narrow inclusion, curvilinear crack
Mots-clés : interface conditions.
Mots-clés : interface conditions.
@article{SEMR_2022_19_2_a39,
author = {I. V. Fankina and A. I. Furtsev and E. M. Rudoy and S. A. Sazhenkov},
title = {Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {935--948},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/}
}
TY - JOUR AU - I. V. Fankina AU - A. I. Furtsev AU - E. M. Rudoy AU - S. A. Sazhenkov TI - Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 935 EP - 948 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/ LA - en ID - SEMR_2022_19_2_a39 ER -
%0 Journal Article %A I. V. Fankina %A A. I. Furtsev %A E. M. Rudoy %A S. A. Sazhenkov %T Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 935-948 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/ %G en %F SEMR_2022_19_2_a39
I. V. Fankina; A. I. Furtsev; E. M. Rudoy; S. A. Sazhenkov. Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 935-948. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/