Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 935-948.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of two-dimensional elasticity theory, a heterogeneous body with a narrow inclusion lying strictly inside the body is considered. It is assumed that the elastic properties of inclusion and its width depend on the small parameter $\delta>0$. Moreover, we assume that the inclusion has a curvilinear rough boundary. We show that there exist three type of limiting problem as $\delta\to0$: $p>1$ – body with crack without interaction of its faces; $p=1$ – body with crack with adhesive interaction of its faces; $p\in[0,1)$ – homogeneous body (no crack).
Keywords: asymptotic analysis, inhomogeneous elastic body, narrow inclusion, curvilinear crack
Mots-clés : interface conditions.
@article{SEMR_2022_19_2_a39,
     author = {I. V. Fankina and A. I. Furtsev and E. M. Rudoy and S. A. Sazhenkov},
     title = {Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {935--948},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/}
}
TY  - JOUR
AU  - I. V. Fankina
AU  - A. I. Furtsev
AU  - E. M. Rudoy
AU  - S. A. Sazhenkov
TI  - Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 935
EP  - 948
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/
LA  - en
ID  - SEMR_2022_19_2_a39
ER  - 
%0 Journal Article
%A I. V. Fankina
%A A. I. Furtsev
%A E. M. Rudoy
%A S. A. Sazhenkov
%T Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 935-948
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/
%G en
%F SEMR_2022_19_2_a39
I. V. Fankina; A. I. Furtsev; E. M. Rudoy; S. A. Sazhenkov. Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 935-948. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a39/

[1] S. Baranova, S.G. Mogilevskaya, V. Mantič, S. Jiménez-Alfaro, “Analysis of the antiplane problem with an embedded zero thickness layer described by the Gurtin-Murdoch model”, J. Elasticity, 140:2 (2020), 171–195 | DOI | MR | Zbl

[2] Y. Benveniste, T. Miloh, “Imperfect soft and stiff interfaces in twodimensional elasticity”, Mech. Mater., 33:6 (2001), 309–323 | DOI

[3] S. Dumont, F. Lebon, M.L. Raffa, R. Rizzoni, “Towards nonlinear imperfect interface models including micro-cracks and smooth roughness”, Ann. Solid Struct. Mech., 9 (2017), 13–27 | DOI

[4] S. Dumont, R. Rizzoni, F. Lebon, E. Sacco, “Soft and hard interface models for bonded elements”, Composites Part B: Engineering, 153 (2018), 480–490 | DOI

[5] I.V. Fankina, A.I. Furtsev, E.M. Rudoy, S.A. Sazhenkov, “Multiscale analysis of stationary thermoelastic vibrations of a composite material”, Phil. Trans. R. Soc. A, 380:2236 (2022), 20210354 | DOI | MR

[6] A.I. Furtsev, “A contact problem for a plate and a beam in presence of adhesion”, J. Appl. Ind. Math., 13:2 (2019), 208–218 | DOI | MR | Zbl

[7] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182-183 (2020), 100–111 | DOI

[8] A. Furtsev, E. Rudoy, “Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates”, Int. J. Solids Struct., 202 (2020), 562–574 | DOI

[9] G. Geymonat, F. Krasucki, M. Serpilli, “Asymptotic derivation of a linear plate model for soft ferromagnetic materials”, Chin. Ann. Math. Ser. B, 39:3 (2018), 451–460 | DOI | MR | Zbl

[10] V.M. Karnaev, “Optimal control of thin elastic inclusion in an elastic body”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 187–210 | DOI | MR | Zbl

[11] D. Hömberg, A.M. Khludnev, “On safe crack shapes in elastic bodies”, Eur. J. Mech., A, Solids, 21:6 (2002), 991–998 | DOI | MR | Zbl

[12] A. Khludnev, “T-shape inclusion in elastic body with a damage parameter”, J. Comput. Appl. Math., 393 (2021), 113540 | DOI | MR | Zbl

[13] A.M. Khludnev, “Asymptotics of solutions for two elastic plates with thin junction”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 484–501 | MR

[14] A. Khludnev, I. Fankina, “Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary”, Z. Angew. Math. Phys., 72:3 (2021), 121 | DOI | MR | Zbl

[15] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, 2000

[16] V.A. Kovtunenko, “Shape sensitivity of curvilinear cracks on interface to nonlinear perturbations”, Z. Angew. Math. Phys., 54:3 (2003), 410–423 | DOI | MR | Zbl

[17] V.A. Kovtunenko, N.P. Lazarev, The energy release rate for non-penetrating crack in poroelastic body by fluid-driven fracture, Mathematics and Mechanics of Solids, 2022 | DOI | MR

[18] V.I. Kushch, S.G. Mogilevskaya, “On modeling of elastic interface layers in particle composites”, Int. J. Eng. Sci., 176 (2022), 103697 | DOI | MR | Zbl

[19] J. Nec̆as, Direct methods in the theory of elliptic equations, Springer, Berlin, 2012 | MR | Zbl

[20] E.V. Pyatkina, “A contact of two elastic plates connected along a thin rigid inclusion”, Sib. Èlektron. Mat. Izv., 17 (2020), 1797–1815 | DOI | MR | Zbl

[21] M.L. Raffa, F. Lebon, R. Rizzoni, “A micromechanical model of a hard interface with micro-cracking damage”, Int. J. Mech. Sci., 216 (2022), 106974 | DOI | MR

[22] R. Rizzoni, F. Lebon, “Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases”, Mech. Res. Commun., 51 (2013), 39–50 | DOI | MR

[23] E.M. Rudoi, “Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks”, J. Appl. Ind. Math., 1:1 (2007), 95–104 | DOI | MR

[24] E.M. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Sib. Èlektron. Mat. Izv., 17 (2020), 615–625 | DOI | MR | Zbl

[25] E. Rudoy, “Asymptotic justification of models of plates containing inside hard thin inclusions”, Technologies, 8:4 (2020), 59 | DOI

[26] E.M. Rudoy, H. Itou, N.P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, J. Appl. Industr. Math., 15:1 (2021), 129–140 | DOI | MR

[27] E. Rudoy, V. Shcherbakov, “First-order shape derivative of the energy for elastic plates with rigid inclusions and interfacial cracks”, Appl. Math. Optim., 84:3 (2021), 2775–2802 | DOI | MR | Zbl

[28] S.A. Sazhenkov, I.V. Fankina, A.I. Furtsev, P.V. Gilev, A.G. Gorynin, O.G. Gorynina, V.M. Karnaev, E.I. Leonova, “Multiscale analysis of a model problem of a thermoelastic body with thin inclusions”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 282–318 | DOI | MR | Zbl

[29] M. Serpilli, S. Lenci, “An overview of different asymptotic models for anisotropic three-layer plates with soft adhesive”, Int. J. Solids Struct., 81 (2016), 130–140 | DOI