Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 912-934.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the blow-up analysis for a class of plate viscoelastic $p(x)$-Kirchhoff type inverse source problem of the form: \begin{align*} u_{tt}+\Delta^{2}u-\left(a+b\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(x)}u-\int_{0}^{t}g(t-\tau)\Delta^{2}u(\tau)d\tau \\ +\beta|u_{t}|^{m(x)-2}u_{t}=\alpha|u|^{q(x)-2}u+f(t)\omega(x). \end{align*} Under suitable conditions on kernel of the memory, initial data and variable exponents, we prove the blow up of solutions in two cases: linear damping term ($m(x)\equiv2$) and nonlinear damping term ($m(x)>2$). Precisely, we show that the solutions with positive initial energy blow up in a finite time when $m(x)\equiv2$ and blow up at infinity if $m(x)>2$.
Keywords: inverse source problem, blow-up, viscoelastic, $p(x)$-Kirchhoff type equation.
@article{SEMR_2022_19_2_a38,
     author = {M. Shahrouzi and J. Ferreira and E. Pi\c{s}kin and N. Boumaza},
     title = {Blow-up analysis for a class of plate viscoelastic $p(x)-${Kirchhoff} type inverse source problem with variable-exponent nonlinearities},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {912--934},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/}
}
TY  - JOUR
AU  - M. Shahrouzi
AU  - J. Ferreira
AU  - E. Pişkin
AU  - N. Boumaza
TI  - Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 912
EP  - 934
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/
LA  - en
ID  - SEMR_2022_19_2_a38
ER  - 
%0 Journal Article
%A M. Shahrouzi
%A J. Ferreira
%A E. Pişkin
%A N. Boumaza
%T Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 912-934
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/
%G en
%F SEMR_2022_19_2_a38
M. Shahrouzi; J. Ferreira; E. Pişkin; N. Boumaza. Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 912-934. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/

[1] S. Antontsev, “Wave equation with $p(x,t)$-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3:4 (2011), 503–525 | MR | Zbl

[2] S. Antontsev, J. Ferreira, “A nonlinear viscoelastic plate equation with $\overrightarrow{p}(x,t)$-Laplace operator: blow up of solutions with negative initial energy”, Nonlinear Anal., Real World Appl., 59 (2021), 103240 | DOI | MR | Zbl

[3] S.N. Antontsev, J. Ferreira, E. Pişkin, M.S. Cordeiro, “Existence and non-existence of solutions for Timoshenko-type equations with variable exponents”, Nonlinear Anal., Real World Appl., 61 (2021), 103341 | DOI | MR | Zbl

[4] S. Antontsev, J. Ferreira, E. Pişkin, “Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities”, Electron. J. Differ. Equ., 2021, 06 | MR | Zbl

[5] S. Arridge, “Optical tomography in medical imaging”, Inverse Probl., 15:2 (1999), R41–R93 | DOI | MR | Zbl

[6] G. Bao, P. Li, Y. Zhao, “Stability for the inverse source problems in elastic and electromagnetic waves”, J. Math. Pures Appl., Ser. 9, 134 (2020), 122–178 | DOI | MR | Zbl

[7] G. Dai, R. Hao, “Existence of solutions for a $p(x)$-Kirchhoff-type equation”, J. Math. Anal. Appl., 359:1 (2009), 275–284 | DOI | MR | Zbl

[8] L. Diening, P. Harjulehto, P. Hästö, M. Růz̆ic̆ka, Lebesgue and Sobolev spaces with variable exponents, Lecture Note in Mathematics, 2017, Springer, Berlin, 2011 | DOI | MR | Zbl

[9] A. Eden, V.K. Kalantarov, “On global behavior of solutions to an inverse problem for nonlinear parabolic equations”, J. Math. Anal. Appl., 307:1 (2005), 120–133 | DOI | MR | Zbl

[10] D. Edmunds, J. Rákosnik, “Sobolev embeddings with variable exponent”, Stud. Math., 143:3 (2000), 267–293 | DOI | MR | Zbl

[11] D. Edmunds, J. Rákosnik, “Sobolev embeddings with variable exponent II”, Math. Nachr., 246-247 (2002), 53–67 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] X. Fan, D. Zhao, On the spaces $L^{p(x)}({\Omega})$ and ${W}^{m,p(x)}({\Omega})$, J. Math. Anal. Appl., 263:2 (2001), 424–446 | DOI | MR | Zbl

[13] X. Fan, Q.H. Zhang, “Existence of solutions for $p(x)$-Laplacian Dirichlet problem”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 52:8 (2003), 1843–1852 | DOI | MR | Zbl

[14] S. Ghegal, I. Hamchi, S.A. Messaoudi, “Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities”, Appl. Anal., 99:8 (2020), 1333–1343 | DOI | MR | Zbl

[15] M.K. Hamdani, A. Harrabi, F. Mtiri, D.D. Repově, “Existence and multiplicity results for a new $p(x)$-Kirchhoff problem”, Nonlinear Anal., Theory Methods Appl., Ser. A: Theory and Methods, 190 (2020), 111598 | DOI | MR | Zbl

[16] F.Z. Mahdi, A. Hakem, “Existence and blow up for a nonlinear viscoelastic hyperbolic problem with variable exponents”, Facta Univ., Ser. Math. Inf., 35:3 (2020), 647–672 | MR | Zbl

[17] S.A. Messaoudi, A.A. Talahmeh, “Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities”, Math. Methods Appl. Sci., 40:18 (2017), 6976–6986 | DOI | MR | Zbl

[18] S.A. Messaoudi, “On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities”, Math. Meth. Appl. Sci., 43:8 (2020), 5114–5126 | DOI | MR | Zbl

[19] S.A. Messaoudi, A.A. Talahmeh, “On wave equation: review and recent results”, Arab. J. Math., 7:2 (2018), 113–145 | DOI | MR | Zbl

[20] S.-H. Park, “Blow-up of solutions for wave equations with strong damping and variable-exponent nonlinearity”, J. Korean Math. Soc., 58:3 (2021), 633–642 | MR | Zbl

[21] S.-H. Park, J.-R. Kang, “Blow-up of solutions for a viscoelastic wave equation with variable exponents”, Math. Methods Appl. Sci., 42:6 (2019), 2083–2097 | DOI | MR | Zbl

[22] E. Pişkin, “Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents”, Int. J. Nonlinear Anal. Appl., 11:1 (2020), 37–45 | Zbl

[23] M. Shahrouzi, “Blow up of solutions to a class of damped viscoelastic inverse source problem”, Differ. Equ. Dyn. Syst., 28:4 (2020), 889–899 | DOI | MR | Zbl

[24] M. Shahrouzi, “Asymptotic stability and blowup of solutions for a class of viscoelastic inverse problem with boundary feedback”, Math. Methods Appl. Sci., 39:9 (2016), 2368–2379 | DOI | MR | Zbl

[25] M. Shahrouzi, “On behavior of solutions to a class of nonlinear hyperbolic inverse source problem”, Acta Math. Sin., Engl. Ser., 32:6 (2016), 683–698 | DOI | MR | Zbl

[26] M. Shahrouzi, “Blow-up analysis for a class of higher-order viscoelastic inverse problem with positive initial energy and boundary feedback”, Ann. Mat. Pura Appl., Ser. 4, 196:5 (2017), 1877–1886 | DOI | MR | Zbl

[27] M. Shahrouzi, “On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities”, Comput. Math. Appl., 75:11 (2018), 3946–3956 | DOI | MR | Zbl

[28] M. Shahrouzi, “General decay and blow up of solutions for a class of inverse problem with elasticity term and variable-exponent nonlinearities”, Math. Methods Appl. Sci., 45:4 (2021), 1864–1878 | DOI | MR

[29] M. Shahrouzi, F. Kargarfard, “Blow-up of solutions for a Kirchhoff type equation with variable-exponent nonlinearities”, J. Appl. Anal., 27:1 (2021), 97–105 | DOI | MR | Zbl

[30] M. Shahrouzi, “Global nonexistence of solutions for a class of viscoelastic Lamé system”, Indian J. Pure Appl. Math., 51:4 (2020), 1383–1397 | DOI | MR | Zbl

[31] M. Shahrouzi, F. Tahamtani, “Global nonexistence and stability of solutions of inverse problems for a class of Petrovsky systems”, Georgian Math. J., 19:3 (2012), 575–586 | DOI | MR | Zbl

[32] F. Tahamtani, M. Shahrouzi, “Asymptotic stability and blow up of solutions for a Petrovsky inverse source problem with dissipative boundary condition”, Math. Methods Appl. Sci., 36:7 (2013), 829–839 | DOI | MR | Zbl

[33] Z. Yang, “Blow-up and lifespan of solutions for a nonlinear viscoelastic Kirchhoff equation”, Results Math., 75:3 (2020), 84 | DOI | MR | Zbl