Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 912-934

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the blow-up analysis for a class of plate viscoelastic $p(x)$-Kirchhoff type inverse source problem of the form: \begin{align*} u_{tt}+\Delta^{2}u-\left(a+b\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(x)}u-\int_{0}^{t}g(t-\tau)\Delta^{2}u(\tau)d\tau \\ +\beta|u_{t}|^{m(x)-2}u_{t}=\alpha|u|^{q(x)-2}u+f(t)\omega(x). \end{align*} Under suitable conditions on kernel of the memory, initial data and variable exponents, we prove the blow up of solutions in two cases: linear damping term ($m(x)\equiv2$) and nonlinear damping term ($m(x)>2$). Precisely, we show that the solutions with positive initial energy blow up in a finite time when $m(x)\equiv2$ and blow up at infinity if $m(x)>2$.
Keywords: inverse source problem, blow-up, viscoelastic, $p(x)$-Kirchhoff type equation.
@article{SEMR_2022_19_2_a38,
     author = {M. Shahrouzi and J. Ferreira and E. Pi\c{s}kin and N. Boumaza},
     title = {Blow-up analysis for a class of plate viscoelastic $p(x)-${Kirchhoff} type inverse source problem with variable-exponent nonlinearities},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {912--934},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/}
}
TY  - JOUR
AU  - M. Shahrouzi
AU  - J. Ferreira
AU  - E. Pişkin
AU  - N. Boumaza
TI  - Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 912
EP  - 934
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/
LA  - en
ID  - SEMR_2022_19_2_a38
ER  - 
%0 Journal Article
%A M. Shahrouzi
%A J. Ferreira
%A E. Pişkin
%A N. Boumaza
%T Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 912-934
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/
%G en
%F SEMR_2022_19_2_a38
M. Shahrouzi; J. Ferreira; E. Pişkin; N. Boumaza. Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 912-934. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/