Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 912-934
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we study the blow-up analysis for a class of plate viscoelastic $p(x)$-Kirchhoff type inverse source problem of the form: \begin{align*} u_{tt}+\Delta^{2}u-\left(a+b\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(x)}u-\int_{0}^{t}g(t-\tau)\Delta^{2}u(\tau)d\tau \\ +\beta|u_{t}|^{m(x)-2}u_{t}=\alpha|u|^{q(x)-2}u+f(t)\omega(x). \end{align*} Under suitable conditions on kernel of the memory, initial data and variable exponents, we prove the blow up of solutions in two cases: linear damping term ($m(x)\equiv2$) and nonlinear damping term ($m(x)>2$). Precisely, we show that the solutions with positive initial energy blow up in a finite time when $m(x)\equiv2$ and blow up at infinity if $m(x)>2$.
Keywords:
inverse source problem, blow-up, viscoelastic, $p(x)$-Kirchhoff type equation.
@article{SEMR_2022_19_2_a38,
author = {M. Shahrouzi and J. Ferreira and E. Pi\c{s}kin and N. Boumaza},
title = {Blow-up analysis for a class of plate viscoelastic $p(x)-${Kirchhoff} type inverse source problem with variable-exponent nonlinearities},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {912--934},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/}
}
TY - JOUR AU - M. Shahrouzi AU - J. Ferreira AU - E. Pişkin AU - N. Boumaza TI - Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 912 EP - 934 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/ LA - en ID - SEMR_2022_19_2_a38 ER -
%0 Journal Article %A M. Shahrouzi %A J. Ferreira %A E. Pişkin %A N. Boumaza %T Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 912-934 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/ %G en %F SEMR_2022_19_2_a38
M. Shahrouzi; J. Ferreira; E. Pişkin; N. Boumaza. Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 912-934. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/