Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a38, author = {M. Shahrouzi and J. Ferreira and E. Pi\c{s}kin and N. Boumaza}, title = {Blow-up analysis for a class of plate viscoelastic $p(x)-${Kirchhoff} type inverse source problem with variable-exponent nonlinearities}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {912--934}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/} }
TY - JOUR AU - M. Shahrouzi AU - J. Ferreira AU - E. Pişkin AU - N. Boumaza TI - Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 912 EP - 934 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/ LA - en ID - SEMR_2022_19_2_a38 ER -
%0 Journal Article %A M. Shahrouzi %A J. Ferreira %A E. Pişkin %A N. Boumaza %T Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 912-934 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/ %G en %F SEMR_2022_19_2_a38
M. Shahrouzi; J. Ferreira; E. Pişkin; N. Boumaza. Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 912-934. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a38/
[1] S. Antontsev, “Wave equation with $p(x,t)$-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3:4 (2011), 503–525 | MR | Zbl
[2] S. Antontsev, J. Ferreira, “A nonlinear viscoelastic plate equation with $\overrightarrow{p}(x,t)$-Laplace operator: blow up of solutions with negative initial energy”, Nonlinear Anal., Real World Appl., 59 (2021), 103240 | DOI | MR | Zbl
[3] S.N. Antontsev, J. Ferreira, E. Pişkin, M.S. Cordeiro, “Existence and non-existence of solutions for Timoshenko-type equations with variable exponents”, Nonlinear Anal., Real World Appl., 61 (2021), 103341 | DOI | MR | Zbl
[4] S. Antontsev, J. Ferreira, E. Pişkin, “Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities”, Electron. J. Differ. Equ., 2021, 06 | MR | Zbl
[5] S. Arridge, “Optical tomography in medical imaging”, Inverse Probl., 15:2 (1999), R41–R93 | DOI | MR | Zbl
[6] G. Bao, P. Li, Y. Zhao, “Stability for the inverse source problems in elastic and electromagnetic waves”, J. Math. Pures Appl., Ser. 9, 134 (2020), 122–178 | DOI | MR | Zbl
[7] G. Dai, R. Hao, “Existence of solutions for a $p(x)$-Kirchhoff-type equation”, J. Math. Anal. Appl., 359:1 (2009), 275–284 | DOI | MR | Zbl
[8] L. Diening, P. Harjulehto, P. Hästö, M. Růz̆ic̆ka, Lebesgue and Sobolev spaces with variable exponents, Lecture Note in Mathematics, 2017, Springer, Berlin, 2011 | DOI | MR | Zbl
[9] A. Eden, V.K. Kalantarov, “On global behavior of solutions to an inverse problem for nonlinear parabolic equations”, J. Math. Anal. Appl., 307:1 (2005), 120–133 | DOI | MR | Zbl
[10] D. Edmunds, J. Rákosnik, “Sobolev embeddings with variable exponent”, Stud. Math., 143:3 (2000), 267–293 | DOI | MR | Zbl
[11] D. Edmunds, J. Rákosnik, “Sobolev embeddings with variable exponent II”, Math. Nachr., 246-247 (2002), 53–67 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[12] X. Fan, D. Zhao, On the spaces $L^{p(x)}({\Omega})$ and ${W}^{m,p(x)}({\Omega})$, J. Math. Anal. Appl., 263:2 (2001), 424–446 | DOI | MR | Zbl
[13] X. Fan, Q.H. Zhang, “Existence of solutions for $p(x)$-Laplacian Dirichlet problem”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 52:8 (2003), 1843–1852 | DOI | MR | Zbl
[14] S. Ghegal, I. Hamchi, S.A. Messaoudi, “Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities”, Appl. Anal., 99:8 (2020), 1333–1343 | DOI | MR | Zbl
[15] M.K. Hamdani, A. Harrabi, F. Mtiri, D.D. Repově, “Existence and multiplicity results for a new $p(x)$-Kirchhoff problem”, Nonlinear Anal., Theory Methods Appl., Ser. A: Theory and Methods, 190 (2020), 111598 | DOI | MR | Zbl
[16] F.Z. Mahdi, A. Hakem, “Existence and blow up for a nonlinear viscoelastic hyperbolic problem with variable exponents”, Facta Univ., Ser. Math. Inf., 35:3 (2020), 647–672 | MR | Zbl
[17] S.A. Messaoudi, A.A. Talahmeh, “Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities”, Math. Methods Appl. Sci., 40:18 (2017), 6976–6986 | DOI | MR | Zbl
[18] S.A. Messaoudi, “On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities”, Math. Meth. Appl. Sci., 43:8 (2020), 5114–5126 | DOI | MR | Zbl
[19] S.A. Messaoudi, A.A. Talahmeh, “On wave equation: review and recent results”, Arab. J. Math., 7:2 (2018), 113–145 | DOI | MR | Zbl
[20] S.-H. Park, “Blow-up of solutions for wave equations with strong damping and variable-exponent nonlinearity”, J. Korean Math. Soc., 58:3 (2021), 633–642 | MR | Zbl
[21] S.-H. Park, J.-R. Kang, “Blow-up of solutions for a viscoelastic wave equation with variable exponents”, Math. Methods Appl. Sci., 42:6 (2019), 2083–2097 | DOI | MR | Zbl
[22] E. Pişkin, “Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents”, Int. J. Nonlinear Anal. Appl., 11:1 (2020), 37–45 | Zbl
[23] M. Shahrouzi, “Blow up of solutions to a class of damped viscoelastic inverse source problem”, Differ. Equ. Dyn. Syst., 28:4 (2020), 889–899 | DOI | MR | Zbl
[24] M. Shahrouzi, “Asymptotic stability and blowup of solutions for a class of viscoelastic inverse problem with boundary feedback”, Math. Methods Appl. Sci., 39:9 (2016), 2368–2379 | DOI | MR | Zbl
[25] M. Shahrouzi, “On behavior of solutions to a class of nonlinear hyperbolic inverse source problem”, Acta Math. Sin., Engl. Ser., 32:6 (2016), 683–698 | DOI | MR | Zbl
[26] M. Shahrouzi, “Blow-up analysis for a class of higher-order viscoelastic inverse problem with positive initial energy and boundary feedback”, Ann. Mat. Pura Appl., Ser. 4, 196:5 (2017), 1877–1886 | DOI | MR | Zbl
[27] M. Shahrouzi, “On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities”, Comput. Math. Appl., 75:11 (2018), 3946–3956 | DOI | MR | Zbl
[28] M. Shahrouzi, “General decay and blow up of solutions for a class of inverse problem with elasticity term and variable-exponent nonlinearities”, Math. Methods Appl. Sci., 45:4 (2021), 1864–1878 | DOI | MR
[29] M. Shahrouzi, F. Kargarfard, “Blow-up of solutions for a Kirchhoff type equation with variable-exponent nonlinearities”, J. Appl. Anal., 27:1 (2021), 97–105 | DOI | MR | Zbl
[30] M. Shahrouzi, “Global nonexistence of solutions for a class of viscoelastic Lamé system”, Indian J. Pure Appl. Math., 51:4 (2020), 1383–1397 | DOI | MR | Zbl
[31] M. Shahrouzi, F. Tahamtani, “Global nonexistence and stability of solutions of inverse problems for a class of Petrovsky systems”, Georgian Math. J., 19:3 (2012), 575–586 | DOI | MR | Zbl
[32] F. Tahamtani, M. Shahrouzi, “Asymptotic stability and blow up of solutions for a Petrovsky inverse source problem with dissipative boundary condition”, Math. Methods Appl. Sci., 36:7 (2013), 829–839 | DOI | MR | Zbl
[33] Z. Yang, “Blow-up and lifespan of solutions for a nonlinear viscoelastic Kirchhoff equation”, Results Math., 75:3 (2020), 84 | DOI | MR | Zbl