Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 627-638.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze a well-known mathematical nonlinear model describing equilibrium of an elastic body with single volume (bulk) rigid inclusion. A possible frictionless contact of the body with a non-deformable obstacle by the Signorini condition on a part of the body boundary is assumed. On the remaining part of the boundary we impose a clamping condition. For a family of corresponding variational problems, we analyze the dependence of their solutions on location and shape of the rigid inclusion. External volume forces depend on the parameters defining location and shape of the inclusion. Continuous dependency of the solutions on location and shape parameters of the inclusion is established. The existence of a solution of the optimal control problem is proven. For this problem, a cost functional is defined by an arbitrary continuous functional on the Sobolev space of sought solutions, while the control is given by three real-valued parameters describing location and shape of the rigid inclusion.
Keywords: variational inequality, optimal shape problem, non-linear boundary conditions, rigid inclusion, location.
@article{SEMR_2022_19_2_a37,
     author = {N. P. Lazarev and E. F. Sharin and G. M. Semenova and E. D. Fedotov},
     title = {Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {627--638},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - E. F. Sharin
AU  - G. M. Semenova
AU  - E. D. Fedotov
TI  - Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 627
EP  - 638
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/
LA  - en
ID  - SEMR_2022_19_2_a37
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A E. F. Sharin
%A G. M. Semenova
%A E. D. Fedotov
%T Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 627-638
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/
%G en
%F SEMR_2022_19_2_a37
N. P. Lazarev; E. F. Sharin; G. M. Semenova; E. D. Fedotov. Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 627-638. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/

[1] A. Rademacher, K. Rosin, “Adaptive optimal control of Signorini's problem”, Comput. Optim. Appl., 70:2 (2018), 531–569 | DOI | MR | Zbl

[2] A. Bermudez, C. Saguez, “Optimal control of a Signorini problem”, SIAM J. Control Optim., 25 (1987), 576–582 | DOI | MR | Zbl

[3] G. Wachsmuth, “Strong stationarity for optimal control of the obstacle problem with control constraints”, SIAM J. Optim., 24:4 (2014), 1914–1932 | DOI | MR | Zbl

[4] M. Hintermüller, I. Kopacka, “Mathematical programs with complementarity constraints in function space: C-and strong stationarity and a path-following algorithm”, SIAM J. Optim., 20:2 (2009), 868–902 | DOI | MR | Zbl

[5] A. Novotny, J. Sokołowski, Topological derivatives in shape optimization, Springer-Verlag, Berlin, 2013 | MR | Zbl

[6] J. Sokołowski, A. Żochowski, “Topological derivatives for optimization of plane elasticity contact problems”, Eng. Anal. Bound. Elem., 32:11 (2008), 900–908 | DOI | Zbl

[7] G. Leugering, J. Sokołowski, A. Żochowski, “Control of crack propagation by shape-topological optimization”, Discret. Contin. Dyn. Syst., 35:6 (2015), 2625–2657 | DOI | MR | Zbl

[8] M. Hintermüller, A. Laurain, “Optimal shape design subject to elliptic variational inequalities”, SIAM J. Control Optim., 49:3 (2011), 1015–1047 | DOI | MR | Zbl

[9] V. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: the antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl

[10] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182-183 (2020), 100–111 | DOI

[11] A. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl

[12] V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl

[13] V.M. Karnaev, “Optimal control of thin elastic incluson in an elastic body”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 187–210 | DOI | MR | Zbl

[14] E. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl

[15] E. Rudoy, “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Methods Appl. Sci., 39:17 (2016), 4994–5006 | DOI | MR | Zbl

[16] E. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:1 (2017), 19 | DOI | MR | Zbl

[17] E.M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 10:2 (2016), 264–276 | DOI | MR | Zbl

[18] R.V. Namm, G.I Tsoy, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. Math. Phys., 59:4 (2019), 659–666 | DOI | MR | Zbl

[19] A. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl

[20] A.M. Khludnev, A.A. Novotny, J. Sokołowski, A. Żochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[21] A. Khludnev, T. Popova, “Equilibrium problem for elastic body with delaminated T-shape inclusion”, J. Comput. Appl. Math., 376 (2020), 112870 | DOI | MR | Zbl

[22] A. Khludnev, T. Popova, “Semirigid inclusions in elastic bodies: mechanical interplay and optimal control”, Comput. Math. Appl., 77:1 (2019), 253–262 | DOI | MR | Zbl

[23] D. Spiridonov, M. Vasilyeva, E.T. Chung, Y. Efendiev, R. Jana, “Multiscale model reduction of the unsaturated flow problem in heterogeneous porous media with rough surface topography”, MDPI Mathematics, 8:6 (2020), 904 | DOI

[24] N. Lazarev, E. Rudoy, “Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies”, J. Comput. Appl. Math., 403 (2022), 113710 | DOI | MR | Zbl

[25] N. Lazarev, V. Everstov, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 99:3 (2018), e201800268 | DOI | MR

[26] N. Lazarev, H. Itou, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff-Love plates with a crack”, Math. Mech. Solids, 24:12 (2019), 3743–3752 | DOI | MR | Zbl

[27] A. Khludnev, V. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, 2000

[28] I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek, Solution of variational inequalities in mechanics, Springer-Verlag, New York etc, 1988 | MR | Zbl

[29] P.G. Ciarlet, Mathematical elasticity, v. I, Studies in Mathematics and its Applications, 20, Three-dimensional elasticity, North-Holland, Amsterdam etc., 1988 | MR | Zbl

[30] J. Oden, N. Kikuchi, Contact problems in elasticity: A study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | MR | Zbl

[31] G. Duvaut, J.-L. Lions, Inequalities in mechanics and physics, Springer, Berlin, 2013 ; 1976 | MR | Zbl

[32] J.L. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin etc, 1971 | MR | Zbl

[33] P. Doktor, “Approximation of domains with Lipschitzian boundary”, Čas. Pěst. Mat., 101 (1976), 237–255 | MR | Zbl