Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a37, author = {N. P. Lazarev and E. F. Sharin and G. M. Semenova and E. D. Fedotov}, title = {Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {627--638}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/} }
TY - JOUR AU - N. P. Lazarev AU - E. F. Sharin AU - G. M. Semenova AU - E. D. Fedotov TI - Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 627 EP - 638 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/ LA - en ID - SEMR_2022_19_2_a37 ER -
%0 Journal Article %A N. P. Lazarev %A E. F. Sharin %A G. M. Semenova %A E. D. Fedotov %T Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 627-638 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/ %G en %F SEMR_2022_19_2_a37
N. P. Lazarev; E. F. Sharin; G. M. Semenova; E. D. Fedotov. Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 627-638. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/
[1] A. Rademacher, K. Rosin, “Adaptive optimal control of Signorini's problem”, Comput. Optim. Appl., 70:2 (2018), 531–569 | DOI | MR | Zbl
[2] A. Bermudez, C. Saguez, “Optimal control of a Signorini problem”, SIAM J. Control Optim., 25 (1987), 576–582 | DOI | MR | Zbl
[3] G. Wachsmuth, “Strong stationarity for optimal control of the obstacle problem with control constraints”, SIAM J. Optim., 24:4 (2014), 1914–1932 | DOI | MR | Zbl
[4] M. Hintermüller, I. Kopacka, “Mathematical programs with complementarity constraints in function space: C-and strong stationarity and a path-following algorithm”, SIAM J. Optim., 20:2 (2009), 868–902 | DOI | MR | Zbl
[5] A. Novotny, J. Sokołowski, Topological derivatives in shape optimization, Springer-Verlag, Berlin, 2013 | MR | Zbl
[6] J. Sokołowski, A. Żochowski, “Topological derivatives for optimization of plane elasticity contact problems”, Eng. Anal. Bound. Elem., 32:11 (2008), 900–908 | DOI | Zbl
[7] G. Leugering, J. Sokołowski, A. Żochowski, “Control of crack propagation by shape-topological optimization”, Discret. Contin. Dyn. Syst., 35:6 (2015), 2625–2657 | DOI | MR | Zbl
[8] M. Hintermüller, A. Laurain, “Optimal shape design subject to elliptic variational inequalities”, SIAM J. Control Optim., 49:3 (2011), 1015–1047 | DOI | MR | Zbl
[9] V. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: the antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl
[10] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182-183 (2020), 100–111 | DOI
[11] A. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl
[12] V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl
[13] V.M. Karnaev, “Optimal control of thin elastic incluson in an elastic body”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 187–210 | DOI | MR | Zbl
[14] E. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl
[15] E. Rudoy, “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Methods Appl. Sci., 39:17 (2016), 4994–5006 | DOI | MR | Zbl
[16] E. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:1 (2017), 19 | DOI | MR | Zbl
[17] E.M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 10:2 (2016), 264–276 | DOI | MR | Zbl
[18] R.V. Namm, G.I Tsoy, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. Math. Phys., 59:4 (2019), 659–666 | DOI | MR | Zbl
[19] A. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl
[20] A.M. Khludnev, A.A. Novotny, J. Sokołowski, A. Żochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl
[21] A. Khludnev, T. Popova, “Equilibrium problem for elastic body with delaminated T-shape inclusion”, J. Comput. Appl. Math., 376 (2020), 112870 | DOI | MR | Zbl
[22] A. Khludnev, T. Popova, “Semirigid inclusions in elastic bodies: mechanical interplay and optimal control”, Comput. Math. Appl., 77:1 (2019), 253–262 | DOI | MR | Zbl
[23] D. Spiridonov, M. Vasilyeva, E.T. Chung, Y. Efendiev, R. Jana, “Multiscale model reduction of the unsaturated flow problem in heterogeneous porous media with rough surface topography”, MDPI Mathematics, 8:6 (2020), 904 | DOI
[24] N. Lazarev, E. Rudoy, “Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies”, J. Comput. Appl. Math., 403 (2022), 113710 | DOI | MR | Zbl
[25] N. Lazarev, V. Everstov, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 99:3 (2018), e201800268 | DOI | MR
[26] N. Lazarev, H. Itou, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff-Love plates with a crack”, Math. Mech. Solids, 24:12 (2019), 3743–3752 | DOI | MR | Zbl
[27] A. Khludnev, V. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, 2000
[28] I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek, Solution of variational inequalities in mechanics, Springer-Verlag, New York etc, 1988 | MR | Zbl
[29] P.G. Ciarlet, Mathematical elasticity, v. I, Studies in Mathematics and its Applications, 20, Three-dimensional elasticity, North-Holland, Amsterdam etc., 1988 | MR | Zbl
[30] J. Oden, N. Kikuchi, Contact problems in elasticity: A study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | MR | Zbl
[31] G. Duvaut, J.-L. Lions, Inequalities in mechanics and physics, Springer, Berlin, 2013 ; 1976 | MR | Zbl
[32] J.L. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin etc, 1971 | MR | Zbl
[33] P. Doktor, “Approximation of domains with Lipschitzian boundary”, Čas. Pěst. Mat., 101 (1976), 237–255 | MR | Zbl