Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 627-638

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze a well-known mathematical nonlinear model describing equilibrium of an elastic body with single volume (bulk) rigid inclusion. A possible frictionless contact of the body with a non-deformable obstacle by the Signorini condition on a part of the body boundary is assumed. On the remaining part of the boundary we impose a clamping condition. For a family of corresponding variational problems, we analyze the dependence of their solutions on location and shape of the rigid inclusion. External volume forces depend on the parameters defining location and shape of the inclusion. Continuous dependency of the solutions on location and shape parameters of the inclusion is established. The existence of a solution of the optimal control problem is proven. For this problem, a cost functional is defined by an arbitrary continuous functional on the Sobolev space of sought solutions, while the control is given by three real-valued parameters describing location and shape of the rigid inclusion.
Keywords: variational inequality, optimal shape problem, non-linear boundary conditions, rigid inclusion, location.
@article{SEMR_2022_19_2_a37,
     author = {N. P. Lazarev and E. F. Sharin and G. M. Semenova and E. D. Fedotov},
     title = {Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {627--638},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - E. F. Sharin
AU  - G. M. Semenova
AU  - E. D. Fedotov
TI  - Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 627
EP  - 638
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/
LA  - en
ID  - SEMR_2022_19_2_a37
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A E. F. Sharin
%A G. M. Semenova
%A E. D. Fedotov
%T Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 627-638
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/
%G en
%F SEMR_2022_19_2_a37
N. P. Lazarev; E. F. Sharin; G. M. Semenova; E. D. Fedotov. Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 627-638. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a37/