Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a36, author = {A. M. Khludnev}, title = {Asymptotics of solutions for two elastic plates with thin junction}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {484--501}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a36/} }
TY - JOUR AU - A. M. Khludnev TI - Asymptotics of solutions for two elastic plates with thin junction JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 484 EP - 501 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a36/ LA - en ID - SEMR_2022_19_2_a36 ER -
A. M. Khludnev. Asymptotics of solutions for two elastic plates with thin junction. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 484-501. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a36/
[1] H. Attouch, G. Buttazzo, G. Michaille, Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization, SIAM, Philadelphia, 2014 | MR | Zbl
[2] R. Ballarini, P. Villaggio, “Elastic stress diffusion around a thin corrugated inclusion”, IMA J. Appl. Math., 76:4 (2011), 633–641 | DOI | MR | Zbl
[3] M. Goudarzi, F. Dal Corso, D. Bigoni, A. Simone, “Dispersion of rigid line inclusions as stiffeners and shear band instability triggers”, Int. J. Solids Structures, 210-211 (2021), 255–272 | DOI
[4] L. Freddi, R. Paroni, T. Roubíček, C. Zanini, “Quasistatic delamination models for Kirchhoff-Love plates”, Z. Angew. Math. Mech., 91:11 (2011), 845–865 | DOI | MR | Zbl
[5] L. Freddi, T. Roubíček, C. Zanini, “Quasistatic delamination of sandwich-like Kirchhoff-Love plates”, J. Elasticity, 113:2 (2013), 219–250 | DOI | MR | Zbl
[6] A.I. Furtsev, “On contact between a thin obstacle and a plate containing a thin inclusion”, J. Math. Sci., New York, 237:4 (2019), 530–545 | DOI | MR | Zbl
[7] A. Furtsev, E. Rudoy, H. Itou, “Modeling of bonded elastic structures by a variational method: theretical and numerical simulation”, Int. J. Solids Structures, 182-183 (2020), 100–111 | DOI
[8] A. Gaudiello, G. Panasenko, A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multistructure”, Commun. Contemp. Math., 18:5 (2016), 1550057 | DOI | MR | Zbl
[9] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000
[10] A.M. Khludnev, Elasticity problems in non-smooth domains, Fizmatlit, M., 2010
[11] A.M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 5:4 (2011), 582–594 | DOI | MR | Zbl
[12] A.M. Khludnev, “Thin rigid inclusions with delaminations in elastic plates”, Eur. J. Mech. A, Solids, 32 (2012), 69–75 | DOI | MR | Zbl
[13] A.M. Khludnev, G. Leugering, “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Syst., 2:1 (2014), 1–21 | DOI | MR | Zbl
[14] A.M. Khludnev, G. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl
[15] A.M. Khludnev, T.S. Popova, “On crack propagations in elastic bodies with thin inclusions”, Sib. Èlektron. Mat. Izv., 14 (2017), 586–599 | MR | Zbl
[16] A.M. Khludnev, “On modeling elastic bodies with defects”, Sib. Èlektron. Mat. Izv., 15 (2018), 153–166 | MR | Zbl
[17] V.A. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: the antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl
[18] N.P. Lazarev, V.A. Kovtunenko, “Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions”, MDPI Mathematics, 10:2 (2022), 250 | DOI
[19] V.A. Kozlov, V.G. Maz'ya, A.B. Movchan, Asymptotic analysis of fields in a multi-structure, Oxford University Press, Oxford, 1999 | MR | Zbl
[20] P. Mallick, Fiber-reinforced Composites. Materials, Manufacturing, and Design, Marcel Dekker, New York, 1993
[21] A. Morassi, E. Rosset, S. Vessella, “Stable determination of a rigid inclusion in an anisotropic elastic plate”, SIAM J. Math. Anal., 44:3 (2012), 2204–2235 | DOI | MR | Zbl
[22] A. Morassi, E. Rosset, S. Vessella, “Optimal stability in the identifcation of a rigid inclusion in an isotropic Kirchhoff-Love plate”, SIAM J. Math. Anal., 51:2 (2019), 731–747 | DOI | MR | Zbl
[23] G. Saccomandi, M.F. Beatty, “Universal relations for fiber-reinforced elastic materials”, Math. Mech. Solids, 7:1 (2002), 95–110 | DOI | MR | Zbl