Asymptotics of solutions for two elastic plates with thin junction
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 484-501

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns an equilibrium problem for two elastic plates connected by a thin junction (bridge) in a case of Neumann boundary conditions, which provide a non-coercivity for the problem. An existence of solutions is proved. Passages to limits are justified with respect to the rigidity parameter of the junction. In particular, the rigidity parameter tends to infinity and to zero. Limit models are investigated.
Keywords: Thin junction, elastic plate, rigidity parameter, non-coercive boundary value problem, thin inclusion.
@article{SEMR_2022_19_2_a36,
     author = {A. M. Khludnev},
     title = {Asymptotics of solutions for two elastic plates with thin junction},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {484--501},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a36/}
}
TY  - JOUR
AU  - A. M. Khludnev
TI  - Asymptotics of solutions for two elastic plates with thin junction
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 484
EP  - 501
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a36/
LA  - en
ID  - SEMR_2022_19_2_a36
ER  - 
%0 Journal Article
%A A. M. Khludnev
%T Asymptotics of solutions for two elastic plates with thin junction
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 484-501
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a36/
%G en
%F SEMR_2022_19_2_a36
A. M. Khludnev. Asymptotics of solutions for two elastic plates with thin junction. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 484-501. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a36/