Completely regular codes in the $n$-dimensional rectangular grid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 861-869.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that two sequences of the intersection array of an arbitrary completely regular code in the $n$-dimensional rectangular grid are monotonic. It is shown that the minimal distance of an arbitrary completely regular code is at most $4$ and the covering radius of an irreducible completely regular code in the grid is at most $2n$.
Keywords: $n$-dimensional rectangular grid, completely regular code, intersection array, covering radius, perfect coloring.
@article{SEMR_2022_19_2_a35,
     author = {S. V. Avgustinovich and A. Yu. Vasil'eva},
     title = {Completely regular codes in the $n$-dimensional rectangular grid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {861--869},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/}
}
TY  - JOUR
AU  - S. V. Avgustinovich
AU  - A. Yu. Vasil'eva
TI  - Completely regular codes in the $n$-dimensional rectangular grid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 861
EP  - 869
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/
LA  - en
ID  - SEMR_2022_19_2_a35
ER  - 
%0 Journal Article
%A S. V. Avgustinovich
%A A. Yu. Vasil'eva
%T Completely regular codes in the $n$-dimensional rectangular grid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 861-869
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/
%G en
%F SEMR_2022_19_2_a35
S. V. Avgustinovich; A. Yu. Vasil'eva. Completely regular codes in the $n$-dimensional rectangular grid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 861-869. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/

[1] S.V Avgustinovich, D.S. Krotov, A.Yu. Vasil'eva, “Completely regular codes in the infinite hexagonal grid”, Sib. Èlektron. Mat. Izv., 13 (2016), 987–1016 | MR | Zbl

[2] S.V Avgustinovich, A.Yu. Vasil'eva, I.V. Sergeeva, “Distance regular colorings of an infinite rectangular grid”, J. Appl. Ind. Math., 6:3 (2012), 280–285 | DOI | MR

[3] S.V Avgustinovich, A.Yu. Vasil'eva, “Distance regular colorings of n-dimensional rectangular grid”, Proceedings of 13th International Workshop on Algebraic and Combinatorial Coding Theory (June 15-21, 2012, Pomorie, Bulgaria), 2012, 35–40

[4] M. Axenovich, “On multiple coverings of the infinite rectangular grid with balls of constant radius”, Discrete Math., 268:1-3 (2003), 31–48 | DOI | MR | Zbl

[5] D.B. Khoroshilova, “On circular perfect two-color colorings”, Discretn. Anal. Issled. Oper., 16:1 (2009), 80–92 | MR | Zbl

[6] D.B. Khoroshilova, “On the parameters of perfect 2-colorings of circulant graphs”, Diskretn. Anal. Issled. Oper., 18:6 (2011), 82–89 | MR | Zbl

[7] J.H. Koolen, “On a conjecture of Martin on the parameters of completely regular codes and the classification of the completely regular codes in the Biggs-Smith graph”, Linear Multilinear Algebra, 39:1-2 (1995), 3–17 | DOI | MR | Zbl

[8] D.S. Krotov, Perfect colorings of $\mathbb{Z}^2$: Nine colors, 2009, arXiv: 0901.0004

[9] W.J. Martin, Completely Regular Subsets, Ph.D. thesis, Univ. Waterloo, 1992 | MR

[10] O.G. Parshina, “Perfect 2-colorings of infinite circulant graphs with continuous set of distances”, Diskretn. Anal. Issled. Oper., 21:2 (2014), 76–83 | MR | Zbl

[11] S.A. Puzynina, “Perfect colorings of vertices of the graph $G(\mathbb{Z}^2)$ in three colors”, Diskretn. Anal. Issled. Oper., Ser. 2, 12:1 (2005), 37–54 | MR | Zbl

[12] A.Yu. Vasil'eva, “Completely regular codes in the triangular grid”, Proceedings of MIPT, 14:2 (2022), 14–42