Completely regular codes in the $n$-dimensional rectangular grid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 861-869
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that two sequences of the intersection array of an arbitrary completely regular code in the $n$-dimensional rectangular grid are monotonic. It is shown that the minimal distance of an arbitrary completely regular code is at most $4$ and the covering radius of an irreducible completely regular code in the grid is at most $2n$.
Keywords:
$n$-dimensional rectangular grid, completely regular code, intersection array, covering radius, perfect coloring.
@article{SEMR_2022_19_2_a35,
author = {S. V. Avgustinovich and A. Yu. Vasil'eva},
title = {Completely regular codes in the $n$-dimensional rectangular grid},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {861--869},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/}
}
TY - JOUR AU - S. V. Avgustinovich AU - A. Yu. Vasil'eva TI - Completely regular codes in the $n$-dimensional rectangular grid JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 861 EP - 869 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/ LA - en ID - SEMR_2022_19_2_a35 ER -
%0 Journal Article %A S. V. Avgustinovich %A A. Yu. Vasil'eva %T Completely regular codes in the $n$-dimensional rectangular grid %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 861-869 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/ %G en %F SEMR_2022_19_2_a35
S. V. Avgustinovich; A. Yu. Vasil'eva. Completely regular codes in the $n$-dimensional rectangular grid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 861-869. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/