Completely regular codes in the $n$-dimensional rectangular grid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 861-869

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that two sequences of the intersection array of an arbitrary completely regular code in the $n$-dimensional rectangular grid are monotonic. It is shown that the minimal distance of an arbitrary completely regular code is at most $4$ and the covering radius of an irreducible completely regular code in the grid is at most $2n$.
Keywords: $n$-dimensional rectangular grid, completely regular code, intersection array, covering radius, perfect coloring.
@article{SEMR_2022_19_2_a35,
     author = {S. V. Avgustinovich and A. Yu. Vasil'eva},
     title = {Completely regular codes in the $n$-dimensional rectangular grid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {861--869},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/}
}
TY  - JOUR
AU  - S. V. Avgustinovich
AU  - A. Yu. Vasil'eva
TI  - Completely regular codes in the $n$-dimensional rectangular grid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 861
EP  - 869
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/
LA  - en
ID  - SEMR_2022_19_2_a35
ER  - 
%0 Journal Article
%A S. V. Avgustinovich
%A A. Yu. Vasil'eva
%T Completely regular codes in the $n$-dimensional rectangular grid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 861-869
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/
%G en
%F SEMR_2022_19_2_a35
S. V. Avgustinovich; A. Yu. Vasil'eva. Completely regular codes in the $n$-dimensional rectangular grid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 861-869. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a35/