Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 747-761
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic behavior of the number of central vertices and F. Buckley's central ratio ${\mathbb R}_{c}(G)=|{\mathbb C}(G)|/|V(G)|$ for almost all $n$-vertex graphs $G$ of fixed diameter $k$ is investigated.
The logarithmic asymptotics of the number of central vertices for almost all such $n$-vertex graphs is established: $0$ or $\log_2 n$ ($1$ or $\log_2 n$), respectively, for arising here subclasses of graphs of the even (odd) diameter.
It is proved that for almost all $n$-vertex graphs of diameter $k$, ${\mathbb R}_{c}(G)=1$ for $k=1,2$, and ${\mathbb R}_{c }(G)=1-2/n$ for graphs of diameter $k=3$, while for $k\geq 4$ the value of the central ratio ${\mathbb R}_{c}(G)$ is bounded by the interval $(\frac{\Delta}{6} + r_1(n), 1-\frac{\Delta}{6} - r_1(n))$ except no more than one value (two values) outside the interval for even diameter $k$ (for odd diameter $k$) depending on $k$. Here $\Delta\in (0,1)$ is arbitrary predetermined constant and $r_1(n),r_2(n)$ are positive infinitesimal functions.
Keywords:
graph, diameter, radius, central vertices, number of central vertices, center, spectrum of center, typical graphs, almost all graphs.
Mots-clés : central ratio
Mots-clés : central ratio
@article{SEMR_2022_19_2_a34,
author = {T. I. Fedoryaeva},
title = {Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {747--761},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/}
}
TY - JOUR AU - T. I. Fedoryaeva TI - Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 747 EP - 761 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/ LA - en ID - SEMR_2022_19_2_a34 ER -
%0 Journal Article %A T. I. Fedoryaeva %T Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 747-761 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/ %G en %F SEMR_2022_19_2_a34
T. I. Fedoryaeva. Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 747-761. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/