Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a34, author = {T. I. Fedoryaeva}, title = {Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {747--761}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/} }
TY - JOUR AU - T. I. Fedoryaeva TI - Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 747 EP - 761 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/ LA - en ID - SEMR_2022_19_2_a34 ER -
%0 Journal Article %A T. I. Fedoryaeva %T Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 747-761 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/ %G en %F SEMR_2022_19_2_a34
T. I. Fedoryaeva. Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 747-761. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/
[1] F. Buckley, Z. Miller, P.J. Slater, “On graphs containing a given graph as a center”, J. Graph Theory, 5 (1981), 427–434 | DOI | MR | Zbl
[2] F. Buckley, “The central ratio of a graph”, Discrete Math., 38:1 (1982), 17–21 | DOI | MR | Zbl
[3] F. Buckley, F. Harary, Distance in graphs, Addison-Wesley, Redwood City, 1990 | MR | Zbl
[4] O.I. Melnikov, R.I. Tyshkevich, V.A. Yemelichev, V.I. Sarvanov, Lectures on Graph Theory, B.I. Wissenschaftsverlag, Mannheim, 1994 | MR | Zbl
[5] T.I. Fedoryaeva, “The diversity vector of balls of a typical graph of small diameter”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 43–54 | MR | Zbl
[6] T.I. Fedoryaeva, “Structure of the diversity vector of balls of a typical graph with given diameter”, Sib. Èlectron. Mat. Izv., 13 (2016), 375–387 | MR | Zbl
[7] T.I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Ind. Math., 11:2 (2017), 204–214 | DOI | MR | Zbl
[8] T.I. Fedoryaeva, “On radius and typical properties of $n$-vertex graphs of given diameter”, Sib. Èlectron. Mat. Izv., 18:1 (2021), 345–357 | DOI | MR | Zbl
[9] T.I. Fedoryaeva, “Center and its spectrum of almost all $n$-vertex graphs of given diameter”, Sib. Èlectron. Mat. Izv., 18:1 (2021), 511–529 | DOI | MR | Zbl
[10] T.I. Fedoryaeva, On binomial coefficients of real arguments, 2022, arXiv: 2206.03007 [math.CO]
[11] G.M. Fikhtengol'ts, Course of Differential and Integral Calculus, v. 2, Fizmatlit, M., 2003; 1948 | Zbl
[12] D. Fowler, “The Binomial Coefficient Function”, Am. Math. Mon., 103:1 (1996), 1–17 | DOI | MR | Zbl
[13] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Amsterdam, 1994 | MR | Zbl
[14] F. Harary, Graph Theory, Addison–Wesley, Mass. etc., 1969 | MR | Zbl
[15] Yanan Hu, Xingzhi Zhan, Possible cardinalities of the center of a graph, 2020, arXiv: 2009.05925 [math.CO] | MR
[16] G.N. Kopylov, E.A. Timofeev, “Centers and radii of graphs”, Usp. Mat. Nauk, 32:6(198) (1977), 226 | MR | Zbl
[17] A.M. Rappoport, “Metric characteristics in the communication networks”, Proceedings of ISA RAN, 14 (2005), 141–147
[18] S. Wasserman, K. Faust, Social network analysis: methods and applications, Cambridge University Press, Cambridge, 1997 | Zbl
[19] S.V. Yablonskij, Introduction to discrete mathematics, Nauka, M., 1986 | MR | Zbl