Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 747-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of the number of central vertices and F. Buckley's central ratio ${\mathbb R}_{c}(G)=|{\mathbb C}(G)|/|V(G)|$ for almost all $n$-vertex graphs $G$ of fixed diameter $k$ is investigated. The logarithmic asymptotics of the number of central vertices for almost all such $n$-vertex graphs is established: $0$ or $\log_2 n$ ($1$ or $\log_2 n$), respectively, for arising here subclasses of graphs of the even (odd) diameter. It is proved that for almost all $n$-vertex graphs of diameter $k$, ${\mathbb R}_{c}(G)=1$ for $k=1,2$, and ${\mathbb R}_{c }(G)=1-2/n$ for graphs of diameter $k=3$, while for $k\geq 4$ the value of the central ratio ${\mathbb R}_{c}(G)$ is bounded by the interval $(\frac{\Delta}{6} + r_1(n), 1-\frac{\Delta}{6} - r_1(n))$ except no more than one value (two values) outside the interval for even diameter $k$ (for odd diameter $k$) depending on $k$. Here $\Delta\in (0,1)$ is arbitrary predetermined constant and $r_1(n),r_2(n)$ are positive infinitesimal functions.
Keywords: graph, diameter, radius, central vertices, number of central vertices, center, spectrum of center, typical graphs, almost all graphs.
Mots-clés : central ratio
@article{SEMR_2022_19_2_a34,
     author = {T. I. Fedoryaeva},
     title = {Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {747--761},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/}
}
TY  - JOUR
AU  - T. I. Fedoryaeva
TI  - Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 747
EP  - 761
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/
LA  - en
ID  - SEMR_2022_19_2_a34
ER  - 
%0 Journal Article
%A T. I. Fedoryaeva
%T Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 747-761
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/
%G en
%F SEMR_2022_19_2_a34
T. I. Fedoryaeva. Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 747-761. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a34/

[1] F. Buckley, Z. Miller, P.J. Slater, “On graphs containing a given graph as a center”, J. Graph Theory, 5 (1981), 427–434 | DOI | MR | Zbl

[2] F. Buckley, “The central ratio of a graph”, Discrete Math., 38:1 (1982), 17–21 | DOI | MR | Zbl

[3] F. Buckley, F. Harary, Distance in graphs, Addison-Wesley, Redwood City, 1990 | MR | Zbl

[4] O.I. Melnikov, R.I. Tyshkevich, V.A. Yemelichev, V.I. Sarvanov, Lectures on Graph Theory, B.I. Wissenschaftsverlag, Mannheim, 1994 | MR | Zbl

[5] T.I. Fedoryaeva, “The diversity vector of balls of a typical graph of small diameter”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 43–54 | MR | Zbl

[6] T.I. Fedoryaeva, “Structure of the diversity vector of balls of a typical graph with given diameter”, Sib. Èlectron. Mat. Izv., 13 (2016), 375–387 | MR | Zbl

[7] T.I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Ind. Math., 11:2 (2017), 204–214 | DOI | MR | Zbl

[8] T.I. Fedoryaeva, “On radius and typical properties of $n$-vertex graphs of given diameter”, Sib. Èlectron. Mat. Izv., 18:1 (2021), 345–357 | DOI | MR | Zbl

[9] T.I. Fedoryaeva, “Center and its spectrum of almost all $n$-vertex graphs of given diameter”, Sib. Èlectron. Mat. Izv., 18:1 (2021), 511–529 | DOI | MR | Zbl

[10] T.I. Fedoryaeva, On binomial coefficients of real arguments, 2022, arXiv: 2206.03007 [math.CO]

[11] G.M. Fikhtengol'ts, Course of Differential and Integral Calculus, v. 2, Fizmatlit, M., 2003; 1948 | Zbl

[12] D. Fowler, “The Binomial Coefficient Function”, Am. Math. Mon., 103:1 (1996), 1–17 | DOI | MR | Zbl

[13] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Amsterdam, 1994 | MR | Zbl

[14] F. Harary, Graph Theory, Addison–Wesley, Mass. etc., 1969 | MR | Zbl

[15] Yanan Hu, Xingzhi Zhan, Possible cardinalities of the center of a graph, 2020, arXiv: 2009.05925 [math.CO] | MR

[16] G.N. Kopylov, E.A. Timofeev, “Centers and radii of graphs”, Usp. Mat. Nauk, 32:6(198) (1977), 226 | MR | Zbl

[17] A.M. Rappoport, “Metric characteristics in the communication networks”, Proceedings of ISA RAN, 14 (2005), 141–147

[18] S. Wasserman, K. Faust, Social network analysis: methods and applications, Cambridge University Press, Cambridge, 1997 | Zbl

[19] S.V. Yablonskij, Introduction to discrete mathematics, Nauka, M., 1986 | MR | Zbl