Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a33, author = {A. V. Nikolaev}, title = {On $1$-skeleton of the polytope of pyramidal tours with step-backs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {674--687}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a33/} }
TY - JOUR AU - A. V. Nikolaev TI - On $1$-skeleton of the polytope of pyramidal tours with step-backs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 674 EP - 687 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a33/ LA - en ID - SEMR_2022_19_2_a33 ER -
A. V. Nikolaev. On $1$-skeleton of the polytope of pyramidal tours with step-backs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 674-687. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a33/
[1] V. Aĭzenshtat, D. Kravchuk, “On the minimum of a linear form on the set of all complete cycles of the symmetric group $S_n$”, Kibernetika, 2, Kiev, 1968, 64–66 | MR | Zbl
[2] D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The traveling salesman problem. A computational study, Princeton University Press, Princeton, 2006 | MR | Zbl
[3] T. Arthanari, “Study of the pedigree polytope and a sufficiency condition for nonadjacency in the tour polytope”, Discrete Optim., 10:3 (2013), 224–232 | DOI | MR | Zbl
[4] E. Balas, M. Padberg, “On the set-covering problem. II: An algorithm for set partitioning”, Oper. Res., 23:1 (1975), 74–90 | DOI | MR | Zbl
[5] M.L. Balinski, “Signature methods for the assignment problem”, Oper. Res., 33:3 (1985), 527–536 | DOI | MR | Zbl
[6] V. Bondarenko, A. Nikolaev, “On graphs of the cone decompositions for the min-cut and max-cut problems”, Int. J. Math. Math. Sci., 2016, 7863650 | MR | Zbl
[7] V. Bondarenko, A. Nikolaev, “Some properties of the skeleton of the pyramidal tours polytope”, Electronic Notes Discrete Math., 61 (2017), 131–137 | DOI | Zbl
[8] V.A. Bondarenko, “Nonpolynomial lower bounds for the complexity of the traveling salesman problem in a class of algorithms”, Autom. Remote Control, 44:9 (1983), 1137–1142 | MR | Zbl
[9] V.A. Bondarenko, A.V. Nikolaev, “Combinatorial and geometric properties of the max-cut and min-cut problems”, Dokl. Math., 88:2 (2013), 516–517 | DOI | MR | Zbl
[10] V.A. Bondarenko, A.V. Nikolaev, D.A. Shovgenov, “1-skeletons of the spanning tree problems with additional constraints”, Autom. Control Comput. Sci., 51:7 (2017), 682–688 | DOI
[11] V.A. Bondarenko, A.V. Nikolaev, “On the skeleton of the polytope of pyramidal tours”, J. Appl. Ind. Math., 12:1 (2018), 9–18 | DOI | MR | Zbl
[12] R.E. Burkard, V.G. Deineko, R. van Dal, J.A.A. van der Veen, G.J. Woeginger, “Well-solvable special cases of the traveling salesman problem: a survey”, SIAM Rev., 40:3 (1998), 496–546 | DOI | MR | Zbl
[13] G. Dantzig, R. Fulkerson, S. Johnson, “Solution of a large-scale traveling-salesman problem”, Oper. Res., 2:4 (1954), 393–410 | MR | Zbl
[14] G.B. Dantzig, Linear programming and extensions, Princeton University Press, Princeton, 1963 | MR | Zbl
[15] J. Edmonds, “Paths, trees, and flowers”, Can. J. Math., 17 (1965), 449–467 | DOI | MR | Zbl
[16] H. Enomoto, Y. Oda, K. Ota, “Pyramidal tours with step-backs and the asymmetric traveling salesman problem”, Discrete Appl. Math., 87:1-3 (1998), 57–65 | DOI | MR | Zbl
[17] M.R. Garey, D.S. Johnson, Computers and intractability. A guide to the theory of NP-completeness, W.H. Freeman, San Francisco, 1979 | MR | Zbl
[18] P. Gilmore, E. Lawler, D. Shmoys, “Well-solved special cases”, The traveling salesman problem. A guided tour of combinatorial optimization, eds. E. Lawler et al, John Wiley Sons, Chichester etc, 1985, 87–143 | MR | Zbl
[19] M. Grötschel, M. Padberg, “Polyhedral theory”, The traveling salesman problem. A guided tour of combinatorial optimization, eds. E. Lawler et al, John Wiley Sons, Chichester etc, 1985, 251–305 | MR | Zbl
[20] Y. Ikura, G.L. Nemhauser, “Simplex pivots on the set packing polytope”, Math. Program., 33 (1985), 123–138 | DOI | MR | Zbl
[21] S.N. Kabadi, “Polynomially solvable cases of the TSP”, The traveling salesman problem and its variations, eds. Gutin Gregory (ed.) et al., Kluwer Academic Publishers, Dordrecht, 2007, 489–583 | DOI | MR | Zbl
[22] M. Khachay, K. Neznakhina, “Generalized pyramidal tours for the generalized traveling salesman problem”, Combinatorial optimization and applications, 11th international conference, COCOA 2017, Proceedings (Shanghai, China, December 16-18, 2017), v. I, eds. Gao Xiaofeng (ed.) et al., Springer, Cham, 2017, 265–277 | DOI | MR | Zbl
[23] P.S. Klyaus, Generation of testproblems for the traveling salesman problem, Prperint Inst. Mat. Akad. Nauk. BSSR, No 16, 1976 | MR
[24] A. Nikolaev, “On vertex adjacencies in the polytope of pyramidal tours with step-backs”, Mathematical optimization theory and operations research, 18th international conference, MOTOR 2019, Proceedings (Ekaterinburg, Russia, July 8-12, 2019), LNCS, 11548, eds. Khachay Michael (ed.) et al., Springer, Cham, 2019, 247–263 | MR | Zbl
[25] A. Nikolaev, A. Kozlova, “Hamiltonian decomposition and verifying vertex adjacency in 1-skeleton of the traveling salesperson polytope by variable neighborhood search”, J. Comb. Optim., 42:2 (2021), 212–230 | DOI | MR | Zbl
[26] Y. Oda, “An asymmetric analogue of van der Veen conditions and the traveling salesman problem”, Discrete Appl. Math., 109:3 (2001), 279–292 | DOI | MR | Zbl
[27] M.W. Padberg, M.R. Rao, “The travelling salesman problem and a class of polyhedra of diameter two”, Math. Program., 7:1 (1974), 32–45 | DOI | MR | Zbl
[28] C.H. Papadimitriou, “The adjacency relation on the traveling salesman polytope is NP-complete”, Math. Program., 14:1 (1978), 312–324 | DOI | MR | Zbl
[29] F.J. Rispoli, S. Cosares, “A bound of 4 for the diameter of the symmetric traveling salesman polytope”, SIAM J. Discrete Math., 11:3 (1998), 373–380 | DOI | MR | Zbl
[30] F. Santos, “A counterexample to the Hirsch conjecture”, Ann. Math. (2), 176:1 (2012), 383–412 | DOI | MR | Zbl
[31] G. Sierksma, R.H. Teunter, G.A. Tijssen, “Faces of diameter two on the Hamiltonian cycle polytype”, Oper. Res. Lett., 18:2 (1995), 59–64 | DOI | MR | Zbl
[32] R.Y. Simanchev, “On the vertex adjacency in a polytope of connected k-factors”, Trudy Inst. Mat. Mekh. UrO RAN, 24, no. 2, 2018, 235–242 | DOI | MR