Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a30, author = {V. A. Strusevich}, title = {Minimizing total completion time on parallel machines with unit length jobs that need one additional resource}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {601--612}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a30/} }
TY - JOUR AU - V. A. Strusevich TI - Minimizing total completion time on parallel machines with unit length jobs that need one additional resource JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 601 EP - 612 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a30/ LA - en ID - SEMR_2022_19_2_a30 ER -
%0 Journal Article %A V. A. Strusevich %T Minimizing total completion time on parallel machines with unit length jobs that need one additional resource %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 601-612 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a30/ %G en %F SEMR_2022_19_2_a30
V. A. Strusevich. Minimizing total completion time on parallel machines with unit length jobs that need one additional resource. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 601-612. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a30/
[1] J. Błažewicz, N. Brauner, G. Finke, “Scheduling with discrete resource constraints”, Handbook of scheduling. Algorithms, models, and performance analysis, ed. Leung, J.Y.-T., Chapman Hall/CRC, Boca Raton, 2004, 23-1–23-18 | MR
[2] J. Błažewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, “Scheduling subject to resource constraints: classification and complexity”, Discr. Appl. Math., 5 (1983), 11–24 | DOI | MR | Zbl
[3] J. Błažewicz, K.H. Ecker, E. Pesch, G. Schmidt, M. Sterna, J. Weglarz, “Scheduling under resource constraints”, Handbook of Scheduling, eds. J. Błažewicz et al., Springer, Cambridge, 2019, 475–525 | MR
[4] R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of scheduling, Addison-Wesley, Reading, 1967 | MR | Zbl
[5] E.B. Edis, C. Oguz, I. Ozkarahan, “Parallel machine scheduling with additional resources: notation, classification, models and solution methods”, Eur. J. Oper. Res., 230:3 (2013), 449–463 | DOI | MR | Zbl
[6] E. Hebrard, M.-J. Hugueta, N. Jozefowiez, A. Maillard, C. Pralet, G. Verfaillie, “Approximation of the parallel machine scheduling problem with additional unit resources”, Discr. Appl. Math., 215 (2016), 126–135 | DOI | MR | Zbl
[7] T. Janssen, C. Swennenhuis, A. Bitar, T. Bosman, D. Gijswijt, L. van Iersel, S. Dausère-Pérèz, C. Yugma, Parallel machine scheduling with a single resource per job, 2018, arXiv: 1809.05009v3
[8] H. Kellerer, V.A. Strusevich, “Scheduling problems for parallel dedicated machines under multiple resource constraints”, Discr. Appl. Math., 133:1-3 (2003), 45–68 | DOI | MR | Zbl
[9] A.W. Marshall, I. Olkin, Inequalities: theory of majorization and its applications, Academic Press, New York etc, 1979 | MR | Zbl
[10] R. McNaughton, “Scheduling with deadlines and loss functions”, Manag. Sci., 6 (1959), 1–12 | DOI | MR | Zbl
[11] J.B. Orlin, “A faster strongly polynomial minimum cost flow algorithm”, Proc. 20th ACM Symp. Theory Comput., STOC'88, 1988, 377–387
[12] V.A. Strusevich, “Approximation algorithms for makespan minimization on parallel machines under resource constraints”, J. Oper. Res. Soc., 72:9 (2021), 2135–2146 | DOI