Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a29, author = {A. Kononov and Yu. Zakharova}, title = {Minimizing makespan for parallelizable jobs with energy constraint}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {586--600}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a29/} }
TY - JOUR AU - A. Kononov AU - Yu. Zakharova TI - Minimizing makespan for parallelizable jobs with energy constraint JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 586 EP - 600 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a29/ LA - en ID - SEMR_2022_19_2_a29 ER -
A. Kononov; Yu. Zakharova. Minimizing makespan for parallelizable jobs with energy constraint. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 586-600. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a29/
[1] K. Belkhale, P. Banerjee, “An approximate algorithm for the partitionable independent task scheduling problem”, Proceedings of International Conference on Parallel Processing, ICPP-90, v. 1, 1990, 72–75 | MR
[2] M. Drozdowski, Scheduling for parallel processing, Springer-Verlag, London, 2009 | MR | Zbl
[3] M. Drozdowski, W. Kubiak, “Scheduling parallel tasks with sequential heads and tails”, Ann. Oper. Res., 90 (1999), 221–246 | DOI | MR | Zbl
[4] J. Du, J.Y-T. Leung, “Complexity of scheduling parallel task systems”, SIAM J. Discrete Math., 2:4 (1989), 473–487 | DOI | MR | Zbl
[5] J. Glasgow, H. Shachnai, “Channel based scheduling of parallelizable tasks”, Proceedings Fifth International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (Los Alamitos, CA, USA, 1997), 11–16
[6] K. Jansen, L. Porkolab, “Linear-time approximation schemes for scheduling malleable parallel tasks”, Algorithmica, 32:3 (2002), 507–520 | DOI | MR | Zbl
[7] A. Kononov, Y. Kovalenko, “Approximation algorithms for energy-efficient scheduling of parallel jobs”, J. Sched., 23:6 (2020), 693–709 | DOI | MR | Zbl
[8] A.V. Kononov, Yu.V. Zakharova, “Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion”, J. Glob. Optim., 83:3 (2022), 539–564 | DOI | MR | Zbl
[9] R. Krishnamurti, B. Narahari, “An approximation algorithm for preemptive scheduling on parallel-task systems”, SIAM J. Discrete Math., 8:4 (1995), 661–669 | DOI | MR | Zbl
[10] H. Kuhn, A. Tucker, “Nonlinear programming”, Proc. Berkeley Sympos. math. Statist. Probability (California July 31 - August 12, 1950), 1951, 481–492 | MR | Zbl
[11] R. Lepère, D. Trystram, G. Woeginger, “Approximation algorithms for scheduling malleable tasks under precedence constraints”, Int. J. Found. Comput. Sci., 13:4 (2002), 613–627 | DOI | MR | Zbl
[12] R. McNaughton, “Scheduling with deadlines and loss functions”, Manage. Sci., 6:1 (1959), 1–12 | DOI | MR | Zbl
[13] Y. Nesterov, Lectures on convex optimization, Springer, Cham, 2018 | MR | Zbl
[14] Q. Wang, K.H. Cheng, “List scheduling of parallel tasks”, Inf. Process. Lett., 37:5 (1991), 291–297 | DOI | MR | Zbl
[15] Q. Wang, K.H. Cheng, “A heuristic of scheduling parallel tasks and its analysis”, SIAM J. Comput., 21:2 (1992), 281–294 | DOI | MR | Zbl