Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a28, author = {P. M. Agzyamova and I. D. Chernykh}, title = {On the two-machine routing open shop on a tree with preemption allowed}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {548--561}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a28/} }
TY - JOUR AU - P. M. Agzyamova AU - I. D. Chernykh TI - On the two-machine routing open shop on a tree with preemption allowed JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 548 EP - 561 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a28/ LA - en ID - SEMR_2022_19_2_a28 ER -
%0 Journal Article %A P. M. Agzyamova %A I. D. Chernykh %T On the two-machine routing open shop on a tree with preemption allowed %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 548-561 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a28/ %G en %F SEMR_2022_19_2_a28
P. M. Agzyamova; I. D. Chernykh. On the two-machine routing open shop on a tree with preemption allowed. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 548-561. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a28/
[1] I. Averbakh, O. Berman, I. Chernykh, “A 6/5-approximation algorithm for the two-machine routing open-shop problem on a two-node network”, Eur. J. Oper. Res., 166:1 (2005), 3–24 | DOI | MR | Zbl
[2] I. Averbakh, O. Berman, I. Chernykh, “The routing open-shop problem on a network: complexity and approximation”, Eur. J. Oper. Res., 173:2 (2006), 531–539 | DOI | MR | Zbl
[3] O. Braun, G. Schmidt, “Parallel processor scheduling with limited number of preemptions”, SIAM J. Comput., 32:3 (2003), 671–680 | DOI | MR | Zbl
[4] I. Chernykh, “Routing open shop with unrelated travel times”, Discrete optimization and operations research, 9th international conference, DOOR 2016, Proceedings (Vladivostok, Russia, September 19-23, 2016), Lecture Notes in Computer Science, 9869, eds. Kochetov Yury (ed.) et al., 2016, 272–283 | DOI | MR | Zbl
[5] I. Chernykh, “Sufficient conditions of polynomial solvability of the two-machine preemptive routing open shop on a tree”, Optimization and applications, 9th international conference, OPTIMA 2018, Revised selected papers (Petrovac, Montenegro, October 1-5, 2018), Comput. Inf. Sci., 974, eds. Evtushenko Yury (ed.) et al., 2019, 97–110 | MR | Zbl
[6] I. Chernykh, A. Kononov, S. Sevastyanov, “Efficient approximation algorithms for the routing open shop problem”, Comput. Oper. Res., 40:3 (2013), 841–847 | DOI | MR | Zbl
[7] I. Chernykh, O. Krivonogova, “Efficient algorithms for the routing open shop with unrelated travel times on cacti”, Optimization and applications, 10th international conference, OPTIMA 2019, Revised selected papers (Petrovac, Montenegro, September 30 – October 4, 2019), Commun. Comput. Inf. Sci., 1145, eds. Jaćimović Milojica (ed.) et al., Springer, Cham, 2020, 1–15 | MR | Zbl
[8] I. Chernykh, M. Kuzevanov, “Sufficient condition of polynomial solvability of two-machine routing open shop with preemption allowed”, Intellektual'nye Sistemy, 17 (2013), 552–556 | MR
[9] I. Chernykh, E. Lgotina, “How the difference in travel times affects the optima localization for the routing open shop”, Mathematical optimization theory and operations research, 18th international conference, MOTOR 2019 (Ekaterinburg, Russia, July 8-12, 2019), Lect. Notes Comput. Sci., 11548, eds. Khachay Michael (ed.) et al., Springer, Cham, 2019, 187–201 | DOI | MR | Zbl
[10] I. Chernykh, E. Lgotina, “Two-machine routing open shop on a tree: instance reduction and efficiently solvable subclass”, Optimization Methods And Software, 2020 | DOI | MR
[11] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Technical Report No 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburg, PA, 1976 | MR
[12] A. Dugarzhapov, A. Kononov, “A polynomial-time algorithm for the preemptive mixed-shop problem with two unit operations per job”, J. Sched., 19:1 (2016), 61–72 | DOI | MR | Zbl
[13] T. Gonzalez, S. Sahni, “Open shop scheduling to minimize finish time”, J. Assoc. Comput. Mach., 23 (1976), 665–679 | DOI | MR | Zbl
[14] A. Khramova, I. Chernykh, “A new algorithm for the two-machine open shop and the polynomial solvability of a scheduling problem with routing”, J. Sched., 24:4 (2021), 405–412 | DOI | MR | Zbl
[15] A. Kononov, “On the routing open shop problem with two machines on a two-vertex network”, J. Appl. Ind. Math., 6:3 (2012), 318–331 | DOI | MR | Zbl
[16] A. Kononov, “$O(\log m)$-approximation for the routing open shop problem”, RAIRO, Oper. Res., 49:2 (2015), 383–391 | DOI | MR | Zbl
[17] A. Kononov, S. Sevastyanov, M. Sviridenko, “A Complete 4-parametric complexity classification of short shop scheduling problems”, J. Sched., 15:4 (2012), 427–446 | DOI | MR | Zbl
[18] A. Kononov, S. Sevastianov, I. Tchernykh, “When difference in machine loads leads to efficient scheduling in open shops”, Ann. Oper. Res., 92 (1999), 211–239 | DOI | MR | Zbl
[19] E. Lawler, J. Lenstra, A. Rinnooy Kan, D. Shmoys, “Sequencing and scheduling: Algorithms and complexity”, Logistics Of Production And Inventory, Handbooks in Operations Research and Management Science, 4, Elsevier, 1993, 445–522 | DOI | MR
[20] M. Pinedo, L. Schrage, “Stochastic shop scheduling: A survey, Deterministic and stochastic scheduling” (Durham/Engl., 1981), Proc. NATO Adv. Study Res. Inst., 1982, 181–196 | MR | Zbl
[21] A. Pyatkin, I. Chernykh, “The open shop problem with routing at a two-node network and allowed preemption”, J. Appl. Ind. Math., 6:3 (2012), 346–354 | DOI | MR | Zbl
[22] S. Sevastyanov, I. Tchernykh, “Computer-aided way to prove theorems in scheduling”, Algorithms - ESA '98, 6th annual European symposium, Proceedings (Venice, Italy, August 24-26, 1998), Lect. Notes Comput. Sci., 1461, eds. Bilardi Gianfranco (ed.) et al., Springer, Berlin, 1998, 502–513 | DOI | MR | Zbl
[23] S. Sevastianov, G. Woeginger, “Makespan minimization in open shops: A polynomial time approximation scheme”, Math. Program., 82:1-2 (1998), 191–198 | DOI | MR | Zbl
[24] A. Soper, “A cyclical search for the two machine flow shop and open shop to minimise finishing time”, J. Sched., 18:3 (2015), 311–314 | DOI | MR | Zbl
[25] D. de Werra, “Graph-theoretical models for preemptive scheduling”, Advances In Project Scheduling, 1989, 171–185 | DOI | MR
[26] D. Williamson, L. Hall, J. Hoogeveen, C. Hurkens, J. Lenstra, S. Sevast'janov, D. Shmoys, “Short shop schedules”, Oper. Res., 45:2 (1997), 288–294 | DOI | MR | Zbl