Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a26, author = {D. I. Panasenko}, title = {The vertex connectivity of some classes of divisible design graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {426--438}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a26/} }
TY - JOUR AU - D. I. Panasenko TI - The vertex connectivity of some classes of divisible design graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 426 EP - 438 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a26/ LA - en ID - SEMR_2022_19_2_a26 ER -
D. I. Panasenko. The vertex connectivity of some classes of divisible design graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 426-438. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a26/
[1] A.E. Brouwer, A. Cohen, A. Neumaier, Distance-regular graphs, Springer, Berlin etc, 1989 | MR | Zbl
[2] A.E. Brouwer, W.H. Haemers, Spectra of graphs, Springer, Berlin, 2012 | MR | Zbl
[3] A.E. Brouwer, J.H. Koolen, “The vertex-connectivity of a distance-regular graph”, Eur. J. Comb., 30:3 (2009), 668–673 | DOI | MR | Zbl
[4] A.E. Brouwer, D.M. Mesner, “The connectivity of strongly regular graphs”, Eur. J. Comb., 6 (1985), 215–216 | DOI | MR | Zbl
[5] C. Godsil, G. Royle, Algebraic graph theory, Springer-Verlag, New York, 2001 | MR | Zbl
[6] D. Crnković, W.H. Haemers, “Walk-regular divisible design graphs”, Des. Codes Cryptography, 72:1 (2014), 165–175 | DOI | MR | Zbl
[7] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: A generalization of strongly regular graphs”, J. Comb. Des., 7:6 (1999), 395–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] A.L. Gavrilyuk, S. Goryainov, V.V. Kabanov, “On the vertex connectivity of Deza graphs”, Proc. Steklov Inst. Math., 285, Suppl. 1 (2014), S68–S77 | DOI | MR | Zbl
[9] S. Goryainov, W.H. Haemers, V.V. Kabanov, L. Shalaginov, “Deza graphs with parameters $(n,k,k-1,a)$ and $\beta = 1$”, J. Comb. Des., 17:3 (2019), 188–202 | DOI | MR | Zbl
[10] S. Goryainov, D. Panasenko, “On vertex connectivity of Deza graphs with parameters of the complements to Seidel graphs”, Eur. J. Comb., 80 (2019), 143–150 | DOI | MR | Zbl
[11] W.H Haemers, H. Kharaghani, M.A. Meulenberg, “Divisible design graphs”, J. Comb. Theory, Ser. A, 118:3 (2011), 978–992 | DOI | MR | Zbl
[12] F. Harary, Graph theory, Addison-Wesley, Mass. etc, 1969 | MR | Zbl
[13] V.V. Kabanov, A.A. Makhnev, D.V. Paduchikh, “On strongly regular graphs with eigenvalue $2$ and their extensions”, Dokl. Math., 81:2 (2010), 268–271 | DOI | MR | Zbl
[14] M.A. Meulenberg, Divisible design graphs, Master's thesis, Tilburg University, 2008
[15] D. Panasenko, L. Shalaginov, “Classification of divisible design graphs with at most $39$ vertices”, J. Comb. Des., 30:4 (2022), 205–219 | DOI | MR
[16] J.-M. Xu, C. Yang, “Connectivity of lexicographic product and direct product of graphs”, Ars Comb., 111 (2013), 3–12 | MR | Zbl