Non-polynomial integrals of multidimensional geodesic flows and Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1088-1093.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct explicit local examples of multidimensional Riemannian metrics whose geodesic flows have non-polynomial first integrals and are completely integrable. We rely on a construction described in a recent paper by A.V. Galajinsky which allows one to construct such examples via the Casimir invariants of finite-dimensional Lie algebras.
Keywords: Riemannian metric, geodesic flow, non-polynomial first integral, Lie algebra
Mots-clés : Casimir invariant.
@article{SEMR_2022_19_2_a25,
     author = {S. V. Agapov},
     title = {Non-polynomial integrals of multidimensional geodesic flows and {Lie} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1088--1093},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/}
}
TY  - JOUR
AU  - S. V. Agapov
TI  - Non-polynomial integrals of multidimensional geodesic flows and Lie algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 1088
EP  - 1093
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/
LA  - ru
ID  - SEMR_2022_19_2_a25
ER  - 
%0 Journal Article
%A S. V. Agapov
%T Non-polynomial integrals of multidimensional geodesic flows and Lie algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 1088-1093
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/
%G ru
%F SEMR_2022_19_2_a25
S. V. Agapov. Non-polynomial integrals of multidimensional geodesic flows and Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1088-1093. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/

[1] G.D. Birkhoff, Dynamical Systems, Colloquium Publications, 9, American Mathematical Society, New York, 1927 | DOI | MR | Zbl

[2] V.V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Springer-Verlag, Berlin, 1996 | MR | Zbl

[3] V.V. Ten, “Local integrals of geodesic flows”, Regul. Chaotic Dyn., 2:2 (1997), 87–89 | MR | Zbl

[4] G. Abdikalikova, A.E. Mironov, “On exact solutions of a system of quasi-linear equations describing integrable geodesic flows on a surface”, Sib. Èlektron. Mat. Izv., 16 (2019), 949–954 | DOI | MR | Zbl

[5] V.N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR, Izv., 21 (1983), 291–306 | DOI | Zbl

[6] G. Darboux, Lessons on the general theory of surfaces and the geometric applications of infinitesimal calculus, Gauthier-Villars Fils, Paris, 1889 | MR | Zbl

[7] G. Heilbronn, Intégration des équations différentielles ordinaires par la méthode de Drach, Gauthier-Villars, Paris, 1956 | MR | Zbl

[8] J. Hietarinta, “New integrable Hamiltonians with transcendental invariants”, Phys. Rev. Lett., 52:1057 (1984) | MR

[9] C.D. Collinson, “A note on the integrability conditions for the existence of rational first integrals of the geodesic equations in a Riemannian space”, Gen. Relativ. Gravitation, 18:2 (1986), 207–214 | DOI | MR | Zbl

[10] A.M. Perelomov, Integrable systems of classical mechanics and Lie algebras, Birkhäuser, Basel etc, 1990 | MR | Zbl

[11] C.D. Collinson, P.J. O'Donnell, “A class of empty spacetimes admitting a rational first integral of the geodesic equation”, Gen. Relativ. Gravitation, 24:4 (1992), 451–455 | DOI | MR | Zbl

[12] A.J. Maciejewski, M. Przybylska, “Darboux polynomials and first integrals of natural polynomial Hamiltonian systems”, Phys. Lett., A, 326:3-4 (2004), 219–226 | DOI | MR | Zbl

[13] V.V. Kozlov, “On rational integrals of geodesic flows”, Regul. Chaotic Dyn., 19:6 (2014), 601–606 | DOI | MR | Zbl

[14] A. Aoki, T. Houri, K. Tomoda, “Rational first integrals of geodesic equations and generalised hidden symmetries”, Classical Quantum Gravity, 33:19 (2016), 195003 | DOI | MR | Zbl

[15] S. Agapov, V. Shubin, “Rational integrals of 2-dimensional geodesic flows: new examples”, J. Geom. Phys., 170 (2021), 104389 | DOI | MR | Zbl

[16] A. Galajinsky, “Some metrics admitting nonpolynomial first integrals of the geodesic equation”, Phys. Lett., B, 820 (2021), 136483 | DOI | MR | Zbl

[17] J. Patera, R.T. Sharp, P. Winternitz, H. Zassenhaus, “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17 (1976), 986–994 | DOI | MR | Zbl