Non-polynomial integrals of multidimensional geodesic flows and Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1088-1093

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct explicit local examples of multidimensional Riemannian metrics whose geodesic flows have non-polynomial first integrals and are completely integrable. We rely on a construction described in a recent paper by A.V. Galajinsky which allows one to construct such examples via the Casimir invariants of finite-dimensional Lie algebras.
Keywords: Riemannian metric, geodesic flow, non-polynomial first integral, Lie algebra
Mots-clés : Casimir invariant.
@article{SEMR_2022_19_2_a25,
     author = {S. V. Agapov},
     title = {Non-polynomial integrals of multidimensional geodesic flows and {Lie} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1088--1093},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/}
}
TY  - JOUR
AU  - S. V. Agapov
TI  - Non-polynomial integrals of multidimensional geodesic flows and Lie algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 1088
EP  - 1093
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/
LA  - ru
ID  - SEMR_2022_19_2_a25
ER  - 
%0 Journal Article
%A S. V. Agapov
%T Non-polynomial integrals of multidimensional geodesic flows and Lie algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 1088-1093
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/
%G ru
%F SEMR_2022_19_2_a25
S. V. Agapov. Non-polynomial integrals of multidimensional geodesic flows and Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1088-1093. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/