Non-polynomial integrals of multidimensional geodesic flows and Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1088-1093
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct explicit local examples of multidimensional Riemannian metrics whose geodesic flows have non-polynomial first integrals and are completely integrable. We rely on a construction described in a recent paper by A.V. Galajinsky which allows one to construct such examples via the Casimir invariants of finite-dimensional Lie algebras.
Keywords:
Riemannian metric, geodesic flow, non-polynomial first integral, Lie algebra
Mots-clés : Casimir invariant.
Mots-clés : Casimir invariant.
@article{SEMR_2022_19_2_a25,
author = {S. V. Agapov},
title = {Non-polynomial integrals of multidimensional geodesic flows and {Lie} algebras},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1088--1093},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/}
}
TY - JOUR AU - S. V. Agapov TI - Non-polynomial integrals of multidimensional geodesic flows and Lie algebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 1088 EP - 1093 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/ LA - ru ID - SEMR_2022_19_2_a25 ER -
S. V. Agapov. Non-polynomial integrals of multidimensional geodesic flows and Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1088-1093. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a25/