The volume of a hyperbolic antipodal octahedron
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 949-958

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the hyperbolic antipodal octahedron. It is an octahedron with antipodal symmetry in the hyperbolic space $\mathbb{H}^3$. We establish necessary and sufficient conditions for the existence of such an octahedron in $\mathbb{H}^3$. By dividing the octahedron into appropriate tetrahedra we obtain an explicit integral formula for the volume of the hyperbolic antipodal octahedron.
Keywords: hyperbolic octahedron, hyperbolic volume, antipodal symmetry, hyperbolic tetrahedron, integral formula.
@article{SEMR_2022_19_2_a24,
     author = {B. Vuong},
     title = {The volume of a hyperbolic antipodal octahedron},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {949--958},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a24/}
}
TY  - JOUR
AU  - B. Vuong
TI  - The volume of a hyperbolic antipodal octahedron
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 949
EP  - 958
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a24/
LA  - en
ID  - SEMR_2022_19_2_a24
ER  - 
%0 Journal Article
%A B. Vuong
%T The volume of a hyperbolic antipodal octahedron
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 949-958
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a24/
%G en
%F SEMR_2022_19_2_a24
B. Vuong. The volume of a hyperbolic antipodal octahedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 949-958. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a24/