Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a24, author = {B. Vuong}, title = {The volume of a hyperbolic antipodal octahedron}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {949--958}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a24/} }
B. Vuong. The volume of a hyperbolic antipodal octahedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 949-958. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a24/
[1] E.M. Andreev, “On convex polyhedra in Lobachevskii spaces”, Math. USSR, Sb., 10:3 (1970), 413–440 | DOI | MR | Zbl
[2] G.D. Mostow, “Quasi-conformal mappings in n-space and the rigidity of the hyperbolic space forms”, Publ. Math. IHES, 34 (1968), 53–104 | DOI | MR | Zbl
[3] G.D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, 78, Princeton University Press, Princeton, 1973 | MR | Zbl
[4] C. Petronio, D. Heard, E. Pervova, “Combinatorial and geometric methods in topology”, Milan J. Math., 76 (2008), 69–92 | DOI | MR | Zbl
[5] D. Heard, E. Pervova, C. Petronio, “The 191 orientable octahedral manifolds”, Exp. Math., 17:4 (2008), 473–486 | DOI | MR | Zbl
[6] N.V. Abrosimov, E.S. Kudina, A.D. Mednykh, “On the volume of a hyperbolic octahedron with $\overline{3}$-symmetry”, Proc. Steklov Inst. Math., 288 (2015), 1–9 | DOI | MR | Zbl
[7] N.V. Abrosimov, G.A. Baigonakova, “Hyperbolic octahedron with $mmm$-symmetry”, Sib. Èlektron. Mat. Izv., 10 (2013), 123–140 | MR | Zbl
[8] N.V. Abrosimov, M. Godoy-Molina, A.D. Mednykh, “On the volume of a spherical octahedron with symmetries”, J. Math. Sci., New York, 161:1 (2009), 1–10 | DOI | MR | Zbl
[9] D.V. Alekseevskii, E.B. Vinberg, A.S. Solodovnikov, “Geometry of spaces of constant curvature”, Geometry II: Spaces of constant curvature, Encycl. Math. Sci., 29, Springer-Verlag, Berlin, 1993 | MR | Zbl
[10] G. Sforza, “Ricerche di estensionimetria negli spazi metrico-projettivi”, Modena Mem. Acc., Ser. III, 8, Appendice (1907), 21–66 | Zbl
[11] N. Abrosimov, A. Mednykh, “Area and volume in non-Euclidean geometry”, Eighteen essays in non-Euclidean geometry, IRMA Lect. Math. Theor. Phys., 29, eds. Alberge Vincent (ed.) et al., European Mathematical Society (EMS), Zürich, 2019, 151–189 | DOI | MR | Zbl
[12] D.A. Derevnin, A.D. Mednykh, “A formula for the volume of a hyperbolic tetrahedron”, Russ. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl
[13] N. Abrosimov, B. Vuong, “Explicit volume formula for a hyperbolic tetrahedron in terms of edge lengths”, J. Knot Theory Ramifications, 30:10 (2021), 2140007 | DOI | MR | Zbl