Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a23, author = {F. G. Korablev}, title = {Homologically trivial part of the {Turaev} -- {Viro} invariant order~$7$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {698--707}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/} }
TY - JOUR AU - F. G. Korablev TI - Homologically trivial part of the Turaev -- Viro invariant order~$7$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 698 EP - 707 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/ LA - ru ID - SEMR_2022_19_2_a23 ER -
F. G. Korablev. Homologically trivial part of the Turaev -- Viro invariant order~$7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 698-707. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/
[1] V.G. Turaev, O.Ya. Viro, “State sum invariants of 3-manifolds and quantum 6j-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl
[2] S. Matveev, Algorithmic topology and classification of 3-manifolds, Springer, Berlin, 2007 | MR | Zbl
[3] V.G. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter, Berlin, 2016 | MR | Zbl
[4] S.V. Matveev, M.V. Sokolov, “On a simple invariant of Turaev-Viro type”, J. Math. Sci., New York, 94:2 (1999), 1226–1229 | DOI | MR | Zbl
[5] M.V. Sokolov, “The Turaev-Viro invariant for 3-manifolds is a sum of three invariants”, Can. Math. Bull., 39:4 (1996), 468–475 | DOI | MR | Zbl
[6] G. Masbaum, J.D. Roberts, “A simple proof of integrality of quantum invariants at prime roots of unity”, Math. Proc. Camb. Philos. Soc., 121:3 (1997), 443–454 | DOI | MR | Zbl