Homologically trivial part of the Turaev -- Viro invariant order~$7$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 698-707
Voir la notice de l'article provenant de la source Math-Net.Ru
Homologically trivial part of any Turaev – Viro invariant odd order $r$ is a Turaev – Viro type invariant order $\frac{r + 1}{2}$. In this paper we find an explicit formulas for this Turaev – Viro type invariant, corresponding to the invariant order $r = 7$. Our formulas express $6j$-symbols and color weights in the term of $\gamma$, where $\gamma$ is a root of the polynomial $\mathcal{T}(x) = x^3 - 2x^2 - x + 1$.
Mots-clés :
Turaev – Viro invariant, $6j$-symbol.
Keywords: quantum number
Keywords: quantum number
@article{SEMR_2022_19_2_a23,
author = {F. G. Korablev},
title = {Homologically trivial part of the {Turaev} -- {Viro} invariant order~$7$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {698--707},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/}
}
TY - JOUR AU - F. G. Korablev TI - Homologically trivial part of the Turaev -- Viro invariant order~$7$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 698 EP - 707 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/ LA - ru ID - SEMR_2022_19_2_a23 ER -
F. G. Korablev. Homologically trivial part of the Turaev -- Viro invariant order~$7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 698-707. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/