Homologically trivial part of the Turaev -- Viro invariant order~$7$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 698-707

Voir la notice de l'article provenant de la source Math-Net.Ru

Homologically trivial part of any Turaev – Viro invariant odd order $r$ is a Turaev – Viro type invariant order $\frac{r + 1}{2}$. In this paper we find an explicit formulas for this Turaev – Viro type invariant, corresponding to the invariant order $r = 7$. Our formulas express $6j$-symbols and color weights in the term of $\gamma$, where $\gamma$ is a root of the polynomial $\mathcal{T}(x) = x^3 - 2x^2 - x + 1$.
Mots-clés : Turaev – Viro invariant, $6j$-symbol.
Keywords: quantum number
@article{SEMR_2022_19_2_a23,
     author = {F. G. Korablev},
     title = {Homologically trivial part of the {Turaev} -- {Viro} invariant order~$7$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {698--707},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/}
}
TY  - JOUR
AU  - F. G. Korablev
TI  - Homologically trivial part of the Turaev -- Viro invariant order~$7$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 698
EP  - 707
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/
LA  - ru
ID  - SEMR_2022_19_2_a23
ER  - 
%0 Journal Article
%A F. G. Korablev
%T Homologically trivial part of the Turaev -- Viro invariant order~$7$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 698-707
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/
%G ru
%F SEMR_2022_19_2_a23
F. G. Korablev. Homologically trivial part of the Turaev -- Viro invariant order~$7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 698-707. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a23/