Splitting of c.e. degrees and superlowness
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 578-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show that for any superlow c.e. degrees $\mathbf{a}$ and $\mathbf{b}$ there exists a superlow c.e. degree $\mathbf{c}$ such that $\mathbf{c}\not=\mathbf{a}_0\cup\mathbf{b}_0$ for all c.e. degrees $\mathbf{a}_0\leqslant\mathbf{a}$, $\mathbf{b}_0\leqslant\mathbf{b}$. This provides one more elementary difference between the classes of low c.e. degrees and superlow c.e. degrees. We also prove that there is a c.e. degree that is not the supremum of any two superlow not necessarily c.e. degrees.
Keywords: low degree, superlow degree, jump-traceable set.
@article{SEMR_2022_19_2_a2,
     author = {M. Kh. Faizrahmanov},
     title = {Splitting of c.e. degrees and superlowness},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {578--585},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/}
}
TY  - JOUR
AU  - M. Kh. Faizrahmanov
TI  - Splitting of c.e. degrees and superlowness
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 578
EP  - 585
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/
LA  - en
ID  - SEMR_2022_19_2_a2
ER  - 
%0 Journal Article
%A M. Kh. Faizrahmanov
%T Splitting of c.e. degrees and superlowness
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 578-585
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/
%G en
%F SEMR_2022_19_2_a2
M. Kh. Faizrahmanov. Splitting of c.e. degrees and superlowness. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 578-585. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/

[1] A. Nies, Computability and randomness, Oxford University Press, Oxford, 2009 | MR | Zbl

[2] A. Nies, “Reals which compute little”, Logic Colloquium '02, Lecture Notes in Logic, 27, eds. Z. Chatzidakis (ed.) et al., Cambridge University Press, Cambridge, 2006, 261–275 | Zbl

[3] R. Downey, N. Greenberg, R. Weber, “Totally $\omega$-computably enumerable degrees and bounding critical triples”, J. Math. Log., 7:2 (2007), 145–171 | DOI | MR | Zbl

[4] G.E. Sacks, “On the degrees less than $0'$”, Ann. Math. (2), 77 (1963), 211–231 | DOI | MR | Zbl

[5] R.I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in mathematical logic, Springer-Verlag, Berlin etc, 1987 | DOI | MR | Zbl

[6] L. Welch, A hierarchy of families of recursively enumerable degrees and a theorem of founding minimal pairs, Ph.D. Thesis, University of Illinois, Urbana, 1980 | MR

[7] M. Bickford, F. Mills, Lowness properties of r.e. sets, Manuscript, UW Madison, 1982

[8] D. Diamondstone, “Promptness does not imply superlow cuppability”, J. Symb. Log., 74:4 (2009), 1264–1272 | DOI | MR | Zbl

[9] M. Faizrakhmanov, “A semilattice generated by superlow computably enumerable degrees”, Russ. Math., 55:1 (2011), 74–78 | DOI | MR | Zbl

[10] R. Downey, K.M. Ng, “Splitting into degrees with low computational strength”, Ann. Pure Appl. Logic, 169:8 (2018), 803–834 | DOI | MR | Zbl

[11] J. Mohrherr, “A refinement of low $n$ and high $n$ for the r.e. degrees”, Z. Math. Logik Grundlag. Math., 32 (1986), 5–12 | DOI | MR | Zbl

[12] M.M. Arslanov, “The Ershov hierarchy”, Computability in Context: Computation and Logic in the Real World, eds. S.B. Cooper (ed.) et al., Imperial College Press, London, 2011 | MR | Zbl