Splitting of c.e. degrees and superlowness
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 578-585

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show that for any superlow c.e. degrees $\mathbf{a}$ and $\mathbf{b}$ there exists a superlow c.e. degree $\mathbf{c}$ such that $\mathbf{c}\not=\mathbf{a}_0\cup\mathbf{b}_0$ for all c.e. degrees $\mathbf{a}_0\leqslant\mathbf{a}$, $\mathbf{b}_0\leqslant\mathbf{b}$. This provides one more elementary difference between the classes of low c.e. degrees and superlow c.e. degrees. We also prove that there is a c.e. degree that is not the supremum of any two superlow not necessarily c.e. degrees.
Keywords: low degree, superlow degree, jump-traceable set.
@article{SEMR_2022_19_2_a2,
     author = {M. Kh. Faizrahmanov},
     title = {Splitting of c.e. degrees and superlowness},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {578--585},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/}
}
TY  - JOUR
AU  - M. Kh. Faizrahmanov
TI  - Splitting of c.e. degrees and superlowness
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 578
EP  - 585
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/
LA  - en
ID  - SEMR_2022_19_2_a2
ER  - 
%0 Journal Article
%A M. Kh. Faizrahmanov
%T Splitting of c.e. degrees and superlowness
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 578-585
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/
%G en
%F SEMR_2022_19_2_a2
M. Kh. Faizrahmanov. Splitting of c.e. degrees and superlowness. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 578-585. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/