Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a2, author = {M. Kh. Faizrahmanov}, title = {Splitting of c.e. degrees and superlowness}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {578--585}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/} }
M. Kh. Faizrahmanov. Splitting of c.e. degrees and superlowness. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 578-585. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a2/
[1] A. Nies, Computability and randomness, Oxford University Press, Oxford, 2009 | MR | Zbl
[2] A. Nies, “Reals which compute little”, Logic Colloquium '02, Lecture Notes in Logic, 27, eds. Z. Chatzidakis (ed.) et al., Cambridge University Press, Cambridge, 2006, 261–275 | Zbl
[3] R. Downey, N. Greenberg, R. Weber, “Totally $\omega$-computably enumerable degrees and bounding critical triples”, J. Math. Log., 7:2 (2007), 145–171 | DOI | MR | Zbl
[4] G.E. Sacks, “On the degrees less than $0'$”, Ann. Math. (2), 77 (1963), 211–231 | DOI | MR | Zbl
[5] R.I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in mathematical logic, Springer-Verlag, Berlin etc, 1987 | DOI | MR | Zbl
[6] L. Welch, A hierarchy of families of recursively enumerable degrees and a theorem of founding minimal pairs, Ph.D. Thesis, University of Illinois, Urbana, 1980 | MR
[7] M. Bickford, F. Mills, Lowness properties of r.e. sets, Manuscript, UW Madison, 1982
[8] D. Diamondstone, “Promptness does not imply superlow cuppability”, J. Symb. Log., 74:4 (2009), 1264–1272 | DOI | MR | Zbl
[9] M. Faizrakhmanov, “A semilattice generated by superlow computably enumerable degrees”, Russ. Math., 55:1 (2011), 74–78 | DOI | MR | Zbl
[10] R. Downey, K.M. Ng, “Splitting into degrees with low computational strength”, Ann. Pure Appl. Logic, 169:8 (2018), 803–834 | DOI | MR | Zbl
[11] J. Mohrherr, “A refinement of low $n$ and high $n$ for the r.e. degrees”, Z. Math. Logik Grundlag. Math., 32 (1986), 5–12 | DOI | MR | Zbl
[12] M.M. Arslanov, “The Ershov hierarchy”, Computability in Context: Computation and Logic in the Real World, eds. S.B. Cooper (ed.) et al., Imperial College Press, London, 2011 | MR | Zbl