On the modeling of stationary sequences using the inverse distribution function
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 502-516

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a method for modeling stationary sequences, which is implemented generally speaking by a nonlinear transformation of Gaussian noise. The paper establishes limit theorems in the metric space $D[0,1]$ for normalized processes of partial sums of sequences obtained as a result of the mentioned Gaussian noise transformation. Application of this method for simulating function words in fiction is investigated.
Keywords: modeling of stationary processes, long-range dependence, limit theorems, function words in fiction.
@article{SEMR_2022_19_2_a17,
     author = {N. S. Arkashov},
     title = {On the modeling of stationary sequences using the inverse distribution function},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {502--516},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a17/}
}
TY  - JOUR
AU  - N. S. Arkashov
TI  - On the modeling of stationary sequences using the inverse distribution function
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 502
EP  - 516
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a17/
LA  - en
ID  - SEMR_2022_19_2_a17
ER  - 
%0 Journal Article
%A N. S. Arkashov
%T On the modeling of stationary sequences using the inverse distribution function
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 502-516
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a17/
%G en
%F SEMR_2022_19_2_a17
N. S. Arkashov. On the modeling of stationary sequences using the inverse distribution function. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 502-516. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a17/