Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a15, author = {G. K. Ryabov}, title = {On nilpotent {Schur} groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1077--1087}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/} }
G. K. Ryabov. On nilpotent Schur groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1077-1087. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/
[1] R. Bildanov, V. Panshin, G. Ryabov, “On WL-rank and WL-dimension of some Deza circulant graphs”, Graphs Combin., 37:6 (2021), 2397–2421 | DOI | MR | Zbl
[2] L.E. Dickson, “Cyclotomy, higher congruences, and Waring's problem”, Am. J. Math., 57 (1935), 391–424 | DOI | MR | Zbl
[3] S. Evdokimov, I. Kovács, I. Ponomarenko, “Characterization of cyclic Schur groups”, St. Petersbg. Math. J., 25:5 (2014), 755–773 | DOI | MR | Zbl
[4] S. Evdokimov, I. Kovács, I. Ponomarenko, “On schurity of finite abelian groups”, Commun. Algebra, 44:1 (2016), 101–117 | DOI | MR | Zbl
[5] J. Golfand, N. Najmark, R. Pöschel, The structure of $S$-rings over $\mathbb{Z}_{2^m}$, Prepr. Akad. Wiss. DDR, Inst. Math., P-Math–01/85, ZIMM, Berlin, 1985
[6] M. Klin, Pöschel, “The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings”, Algebraic Methods in Graph Theory, v. I, North-Holland, Amsterdam, 1981, 405–434 | MR
[7] M. Muzychuk, I. Ponomarenko, “On Schur $2$-groups”, J. Math. Sci., New York, 219:4 (2016), 565–594 | DOI | MR | Zbl
[8] I. Ponomarenko, G. Ryabov, “Abelian Schur groups of odd order”, Sib. Èlectron. Mat. Izv., 15 (2018), 397–411 | MR | Zbl
[9] I. Ponomarenko, A. Vasil'ev, “On non-abelian Schur groups”, J. Algebra Appl., 13:8 (2014), 1450055 | DOI | MR | Zbl
[10] R. Pöschel, “Untersuchungen von s-ringen insbesondere im gruppenring von p-gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl
[11] G. Ryabov, “On Schur $3$-groups”, Sib. Èlectron. Mat. Izv., 12 (2015), 223–331 | MR | Zbl
[12] G. Ryabov, “On Schur p-groups of odd order”, J. Algebra Appl., 16:3 (2017), 1750045 | DOI | MR | Zbl
[13] G. Ryabov, Classification of abelian Schur groups, in preparation
[14] I. Schur, “Zur theorie der einfach transitiven Permutationgruppen”, S.-B. Preus Akad. Wiss. Phys.-Math. Kl., 18:20 (1933), 598–623 | Zbl
[15] H. Wielandt, Finite permutation groups, Academic Press, New York-London, 1964 | MR | Zbl
[16] H. Wielandt, Permutation groups through invariant relations and invariant functions, Lect. Notes Dept. Math. Ohio St. Univ., Columbus, 1969
[17] M. Ziv-Av, “Enumeration of Schur rings over small groups”, Lecture Notes in Computer Science, 8660, 2014, 491–500 | DOI | MR | Zbl