On nilpotent Schur groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1077-1087.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called a Schur group if every $S$-ring over $G$ is schurian, i.e. associated in a natural way with a subgroup of $\mathrm{Sym}(G)$ that contains all right translations. We prove that every nonabelian nilpotent Schur group belongs to one of a few explicitly given families of groups.
Keywords: Schur rings, Schur groups, nilpotent groups.
@article{SEMR_2022_19_2_a15,
     author = {G. K. Ryabov},
     title = {On nilpotent {Schur} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1077--1087},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/}
}
TY  - JOUR
AU  - G. K. Ryabov
TI  - On nilpotent Schur groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 1077
EP  - 1087
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/
LA  - en
ID  - SEMR_2022_19_2_a15
ER  - 
%0 Journal Article
%A G. K. Ryabov
%T On nilpotent Schur groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 1077-1087
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/
%G en
%F SEMR_2022_19_2_a15
G. K. Ryabov. On nilpotent Schur groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1077-1087. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/

[1] R. Bildanov, V. Panshin, G. Ryabov, “On WL-rank and WL-dimension of some Deza circulant graphs”, Graphs Combin., 37:6 (2021), 2397–2421 | DOI | MR | Zbl

[2] L.E. Dickson, “Cyclotomy, higher congruences, and Waring's problem”, Am. J. Math., 57 (1935), 391–424 | DOI | MR | Zbl

[3] S. Evdokimov, I. Kovács, I. Ponomarenko, “Characterization of cyclic Schur groups”, St. Petersbg. Math. J., 25:5 (2014), 755–773 | DOI | MR | Zbl

[4] S. Evdokimov, I. Kovács, I. Ponomarenko, “On schurity of finite abelian groups”, Commun. Algebra, 44:1 (2016), 101–117 | DOI | MR | Zbl

[5] J. Golfand, N. Najmark, R. Pöschel, The structure of $S$-rings over $\mathbb{Z}_{2^m}$, Prepr. Akad. Wiss. DDR, Inst. Math., P-Math–01/85, ZIMM, Berlin, 1985

[6] M. Klin, Pöschel, “The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings”, Algebraic Methods in Graph Theory, v. I, North-Holland, Amsterdam, 1981, 405–434 | MR

[7] M. Muzychuk, I. Ponomarenko, “On Schur $2$-groups”, J. Math. Sci., New York, 219:4 (2016), 565–594 | DOI | MR | Zbl

[8] I. Ponomarenko, G. Ryabov, “Abelian Schur groups of odd order”, Sib. Èlectron. Mat. Izv., 15 (2018), 397–411 | MR | Zbl

[9] I. Ponomarenko, A. Vasil'ev, “On non-abelian Schur groups”, J. Algebra Appl., 13:8 (2014), 1450055 | DOI | MR | Zbl

[10] R. Pöschel, “Untersuchungen von s-ringen insbesondere im gruppenring von p-gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl

[11] G. Ryabov, “On Schur $3$-groups”, Sib. Èlectron. Mat. Izv., 12 (2015), 223–331 | MR | Zbl

[12] G. Ryabov, “On Schur p-groups of odd order”, J. Algebra Appl., 16:3 (2017), 1750045 | DOI | MR | Zbl

[13] G. Ryabov, Classification of abelian Schur groups, in preparation

[14] I. Schur, “Zur theorie der einfach transitiven Permutationgruppen”, S.-B. Preus Akad. Wiss. Phys.-Math. Kl., 18:20 (1933), 598–623 | Zbl

[15] H. Wielandt, Finite permutation groups, Academic Press, New York-London, 1964 | MR | Zbl

[16] H. Wielandt, Permutation groups through invariant relations and invariant functions, Lect. Notes Dept. Math. Ohio St. Univ., Columbus, 1969

[17] M. Ziv-Av, “Enumeration of Schur rings over small groups”, Lecture Notes in Computer Science, 8660, 2014, 491–500 | DOI | MR | Zbl