On nilpotent Schur groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1077-1087
Voir la notice de l'article provenant de la source Math-Net.Ru
A finite group $G$ is called a Schur group if every $S$-ring over $G$ is schurian, i.e. associated in a natural way with a subgroup of $\mathrm{Sym}(G)$ that contains all right translations. We prove that every nonabelian nilpotent Schur group belongs to one of a few explicitly given families of groups.
Keywords:
Schur rings, Schur groups, nilpotent groups.
@article{SEMR_2022_19_2_a15,
author = {G. K. Ryabov},
title = {On nilpotent {Schur} groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1077--1087},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/}
}
G. K. Ryabov. On nilpotent Schur groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1077-1087. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/