On nilpotent Schur groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1077-1087

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called a Schur group if every $S$-ring over $G$ is schurian, i.e. associated in a natural way with a subgroup of $\mathrm{Sym}(G)$ that contains all right translations. We prove that every nonabelian nilpotent Schur group belongs to one of a few explicitly given families of groups.
Keywords: Schur rings, Schur groups, nilpotent groups.
@article{SEMR_2022_19_2_a15,
     author = {G. K. Ryabov},
     title = {On nilpotent {Schur} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1077--1087},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/}
}
TY  - JOUR
AU  - G. K. Ryabov
TI  - On nilpotent Schur groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 1077
EP  - 1087
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/
LA  - en
ID  - SEMR_2022_19_2_a15
ER  - 
%0 Journal Article
%A G. K. Ryabov
%T On nilpotent Schur groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 1077-1087
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/
%G en
%F SEMR_2022_19_2_a15
G. K. Ryabov. On nilpotent Schur groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1077-1087. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a15/