Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a14, author = {I. V. Latkin and A. V. Seliverstov}, title = {On computations over ordered rings}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1054--1076}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a14/} }
I. V. Latkin; A. V. Seliverstov. On computations over ordered rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1054-1076. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a14/
[1] E. Neumann, A. Pauly, “A topological view on algebraic computation models”, J. Complexity, 44 (2018), 1–22 | DOI | MR | Zbl
[2] A.V. Seliverstov, “Heuristic algorithms for recognition of some cubic hypersurfaces”, Program. Comput. Softw., 47:1 (2021), 50–55 | DOI | MR | Zbl
[3] A.V. Seliverstov, “Binary solutions to large systems of linear equations”, Prikl. Diskretn. Mat., 52 (2021), 5–15 | DOI | MR | Zbl
[4] L. Blum, M. Shub, S. Smale, “On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines”, Bull. Am. Math. Soc., New Ser., 21:1 (1989), 1–46 | DOI | MR | Zbl
[5] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real computation, Springer, New York, 1997 | MR | Zbl
[6] I.V. Ashaev, V.Ya. Belyaev, A.G. Myasnikov, “Toward a generalized computability theory”, Algebra Logic, 32:4 (1993), 183–205 | DOI | MR | Zbl
[7] A. Hemmerling, “Computability of string functions over algebraic structures”, Math. Log. Q., 44:1 (1998), 1–44 | DOI | MR | Zbl
[8] P. Koepke, A.S. Morozov, “Characterizations of ITBM-computability. I”, Algebra Logic, 59:6 (2021), 423–436 | DOI | MR | Zbl
[9] P. Koepke, A.S. Morozov, “Characterizations of ITBM-computability. II”, Algebra Logic, 60:1 (2021), 26–37 | DOI | MR | Zbl
[10] M. Carl, “Taming Koepke's zoo II: Register machines”, Ann. Pure Appl. Logic, 173:3 (2022), 103041 | DOI | MR | Zbl
[11] K. Meer, “A note on a $P \ne NP$ result for a restricted class of real machines”, J. Complexity, 8:4 (1992), 451–453 | DOI | MR | Zbl
[12] P. Koiran, “Computing over the reals with addition and order”, Theor. Comput. Sci., 133:1 (1994), 35–47 | DOI | MR | Zbl
[13] F. Cucker, M. Matamala, “On digital nondeterminism”, Math. Syst. Theory, 29:6 (1996), 635–647 | DOI | MR | Zbl
[14] C. Gaßner, “The P-DNP problem for infinite Abelian groups”, J. Complexity, 17:3 (2001), 574–583 | DOI | MR | Zbl
[15] M. Prunescu, “$P \ne NP$ for all infinite Boolean algebras”, Math. Log. Q., 49:2 (2003), 210–213 | DOI | MR | Zbl
[16] A. Rybalov, “On the $P-NP$ problem over real matrix rings”, Theor. Comput. Sci., 314:1-2 (2004), 281–285 | DOI | MR | Zbl
[17] A.N. Rybalov, “Relativizations of the $P=NP$ problem over the complex number field”, Sib. Èlectron. Mat. Izv., 1 (2004), 91–98 | MR | Zbl
[18] A. Hemmerling, “$P=NP$ for some structures over the binary words”, J. Complexity, 21:4 (2005), 557–578 | DOI | MR | Zbl
[19] C.C. Chang, H.J. Keisler, Model theory, North-Holland, Amsterdam etc, 1990 | MR | Zbl
[20] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Publishing Company, Reading, Mass. etc, 1974 | MR | Zbl
[21] P.E. Alaev, V.L. Selivanov, “Fields of algebraic numbers computable in polynomial time. I”, Algebra Logic, 58:6 (2020), 447–469 | DOI | MR | Zbl
[22] P.E. Alaev, V.L. Selivanov, “Fields of algebraic numbers computable in polynomial time. II”, Algebra Logic, 60:6 (2022), 349–359 | DOI | MR | Zbl
[23] A. Sinhababu, T. Thierauf, “Factorization of polynomials given by arithmetic branching programs”, Computat. Complexity, 30:2 (2021), 15 | DOI | MR | Zbl
[24] W. Habicht, “Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens”, Comment. Math. Helv., 21 (1948), 99–116 | DOI | MR | Zbl
[25] A.G. Akritas, Elements of computer algebra with applications, John Wiley Sons, New York etc, 1989 | MR | Zbl
[26] W.S. Brown, “The subresultant PRS algorithm”, ACM Trans. Math. Softw., 4:3 (1978), 237–249 | DOI | MR | Zbl
[27] D.D. Dzhafarov, J.R. Mileti, “The complexity of primes in computable unique factorization domains”, Notre Dame J. Formal Logic, 59:2 (2018), 139–156 | DOI | MR | Zbl
[28] K. Koiliaris, C. Xu, “Faster pseudopolynomial time algorithms for subset sum”, ACM Trans. Algorithms, 15:3 (2019), 40 | DOI | MR | Zbl
[29] A.V. Seliverstov, “On binary solutions to systems of equations”, Prikl. Diskretn. Mat., 45 (2019), 26–32 | DOI | MR | Zbl
[30] T. Alon, N. Halman, “Strongly polynomial FPTASes for monotone dynamic programs”, Algorithmica, 84:10 (2022), 2785–2819 | DOI | MR | Zbl
[31] P. Dusart, “Explicit estimates of some functions over primes”, Ramanujan J., 45:1 (2018), 227–251 | DOI | MR | Zbl