The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 902-911

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the quasivariety $\mathbf{S}\mathbf{P}(L_6)$ is a variety and find an equational basis for this variety.
Keywords: lattice, quasivariety, variety, poset.
@article{SEMR_2022_19_2_a13,
     author = {A. O. Basheyeva and M. V. Schwidefsky and K. D. Sultankulov},
     title = {The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. {I.} {An} equational basis},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {902--911},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/}
}
TY  - JOUR
AU  - A. O. Basheyeva
AU  - M. V. Schwidefsky
AU  - K. D. Sultankulov
TI  - The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 902
EP  - 911
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/
LA  - en
ID  - SEMR_2022_19_2_a13
ER  - 
%0 Journal Article
%A A. O. Basheyeva
%A M. V. Schwidefsky
%A K. D. Sultankulov
%T The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 902-911
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/
%G en
%F SEMR_2022_19_2_a13
A. O. Basheyeva; M. V. Schwidefsky; K. D. Sultankulov. The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 902-911. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/