The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 902-911.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the quasivariety $\mathbf{S}\mathbf{P}(L_6)$ is a variety and find an equational basis for this variety.
Keywords: lattice, quasivariety, variety, poset.
@article{SEMR_2022_19_2_a13,
     author = {A. O. Basheyeva and M. V. Schwidefsky and K. D. Sultankulov},
     title = {The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. {I.} {An} equational basis},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {902--911},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/}
}
TY  - JOUR
AU  - A. O. Basheyeva
AU  - M. V. Schwidefsky
AU  - K. D. Sultankulov
TI  - The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 902
EP  - 911
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/
LA  - en
ID  - SEMR_2022_19_2_a13
ER  - 
%0 Journal Article
%A A. O. Basheyeva
%A M. V. Schwidefsky
%A K. D. Sultankulov
%T The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 902-911
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/
%G en
%F SEMR_2022_19_2_a13
A. O. Basheyeva; M. V. Schwidefsky; K. D. Sultankulov. The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 902-911. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/

[1] D. Bredikhin, B. Schein, “Representation of ordered semigroups and lattices by binary relations”, Colloq. Math., 39 (1978), 1–12 | DOI | MR | Zbl

[2] W. Dziobiak, M.V. Schwidefsky, “Categorical dualities for some two categories of lattices: An extended abstract”, Bull. Sec. Logic, 51:3 (2022), 329–344 | DOI | MR

[3] R. Freese, J. Ježek, J.B. Nation, Free lattices, Mathematical Surveys Monographs, 42, American Mathematical Society, Providence, 1995 | DOI | MR | Zbl

[4] V.A. Gorbunov, Algebraic theory of quasivarieties, Consultants Bureau, New York, 1998 | MR | Zbl

[5] A.P. Huhn, “Schwach distributive Verbände. I”, Acta Sci. Math., 33 (1972), 297–305 | MR | Zbl

[6] J. Hyndman, J.B. Nation, The lattice of subquasivarieties of a locally finite quasivariety, CMS Books in Mathematics, Springer, Cham, 2018 | DOI | MR | Zbl

[7] A.I. Mal'tsev, Algebraic systems, Springer-Verlag, Berlin etc, 1973 | MR | Zbl

[8] R. McKenzie, “Equational bases and nonmodular lattice varieties”, Trans. Am. Math. Soc., 174:1 (1973), 1–43 | MR | Zbl

[9] J.B. Nation, “An approach to lattice varieties of finite height”, Algebra Univers., 27:4 (1990), 521–543 | DOI | MR | Zbl

[10] V.B. Repnitskiǐ, “On finite lattices embeddable in subsemigroup lattices”, Semigroup Forum, 46:3 (1993), 388–397 | DOI | MR | Zbl

[11] V.B. Repnitskiǐ, “On representation of lattices by lattices of subsemigroups”, Russi. Math., 40:1 (1996), 55–64 | MR | Zbl

[12] M.V. Semenova, “Lattices of suborders”, Sib. Math. J., 40:3 (1999), 577–584 | DOI | MR | Zbl

[13] M.V. Semenova, “Lattices that are embeddable into suborder lattices”, Algebra Logic, 44:4 (2005), 270–285 | DOI | MR | Zbl

[14] M.V. Semenova, “On lattices embeddable into subsemigroup lattices. III: Nilpotent semigroups”, Sib. Math. J., 48:1, 156–164 | DOI | MR | Zbl

[15] B. Sivák, “Representation of finite lattices by orders on finite sets”, Math. Slovaca, 28:2 (1978), 203–215 | MR | Zbl