Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a13, author = {A. O. Basheyeva and M. V. Schwidefsky and K. D. Sultankulov}, title = {The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. {I.} {An} equational basis}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {902--911}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/} }
TY - JOUR AU - A. O. Basheyeva AU - M. V. Schwidefsky AU - K. D. Sultankulov TI - The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 902 EP - 911 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/ LA - en ID - SEMR_2022_19_2_a13 ER -
%0 Journal Article %A A. O. Basheyeva %A M. V. Schwidefsky %A K. D. Sultankulov %T The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 902-911 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/ %G en %F SEMR_2022_19_2_a13
A. O. Basheyeva; M. V. Schwidefsky; K. D. Sultankulov. The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 902-911. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a13/