Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a12, author = {S. V. Sudoplatov}, title = {Arities and aritizabilities of first-order theories}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {889--901}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a12/} }
S. V. Sudoplatov. Arities and aritizabilities of first-order theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 889-901. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a12/
[1] S.V. Sudoplatov, “On a certain complexity estimate in graph theory”, Sib. Math. J., 37:3 (1996), 614–671 | DOI | MR | Zbl
[2] S.V. Sudoplatov, “Transitive arrangements of algebraic systems”, Sib. Math. J., 40:6 (1999), 1142–1145 | DOI | MR | Zbl
[3] A.I. Maltsev, Algebraic systems, Springer-Verlag, Berlin etc, 1973 | MR | Zbl
[4] L. Henkin, J.D. Monk, A. Tarski, Cylindric algebras, v. 1, North-Holland Publishing Company, Amsterdam-London, 1971 | MR | Zbl
[5] L. Henkin, J.D. Monk, A. Tarski, I. Nemeti, Cylindric set algebras. Cylindric set algebras and related structures, Lecture Notes in Mathematics, 883, Springer-Verlag, Berlin etc., 1981 | DOI | MR | Zbl
[6] L. Henkin, J.D. Monk, A. Tarski, Cylindric algebras, v. II, Studies in Logic and the Foundations of Mathematics, 115, North-Holland, Amsterdam etc., 1985 | MR | Zbl
[7] T. Imieliński, Jr.W. Lipski, “The relational model of data and cylindric algebras”, J. Comput. Syst. Sci., 28:1 (1984), 80–102 | DOI | MR | Zbl
[8] B.Sh. Kulpeshov, H.D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q., 51:4 (2005), 377–399 | DOI | MR | Zbl
[9] B.S. Baizhanov, B.Sh. Kulpeshov, “On behaviour of 2-formulas in weakly o-minimal theories”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference, eds. Goncharov S. S. (ed.) et al., World Scientific, Hackensack, 2006, 31–40 | DOI | MR | Zbl
[10] B.Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly o-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | MR | Zbl
[11] A.B. Altaeva, B.Sh. Kulpeshov, “On almost binary weakly circularly minimal structures”, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74–82 | MR
[12] B.Sh. Kulpeshov, “On almost binarity in weakly circularly minimal structures”, Eurasian Math. J., 7:2 (2016), 38–49 | MR | Zbl
[13] A.B. Altaeva, B.Sh. Kulpeshov, “Binarity of almost $\omega$-categorical quite o-minimal theories”, Sib. Math. J., 61:3 (2020), 379–390 | DOI | MR | Zbl
[14] B.Sh. Kulpeshov, “A criterion for binarity of almost $\omega$-categorical weakly o-minimal theories”, Sib. Math. J., 62:6 (2021), 1063–1075 | DOI | MR | Zbl
[15] A.L. Semenov, “Finiteness conditions for algebras of relations”, Proc. Steklov Inst. Math., 242 (2003), 92–96 | MR | Zbl
[16] S.V. Sudoplatov, Classification of countable models of complete theories, NSTU, Novosibirsk, 2018
[17] I.V. Shulepov, S.V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. Èlectron. Mat. Izv., 11 (2014), 380–407 | MR | Zbl
[18] B.Sh. Kulpeshov, S.V. Sudoplatov, “On algebras of distributions of binary formulas for quite $o$-minimal theories”, News of the National Academy of Sciences of the Republic of Kazakhstan. Physical-Mathematical Series, 300:2 (2015)
[19] D.Yu. Emel'yanov, “On algebras of distributions of binary formulas for theories of unars”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 17 (2016), 23–36 | Zbl
[20] D.Yu. Emel'yanov, B.Sh. Kulpeshov, S.V. Sudoplatov, “Algebras of distributions for binary formulas in countably categorical weakly o-minimal structures”, Algebra Logic, 56:1 (2017), 13–36 | DOI | MR | Zbl
[21] D.Yu. Emel'yanov, S.V. Sudoplatov, “On deterministic and absorbing algebras of binary formulas of polygonometrical theories”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 20 (2017), 32–44 | MR | Zbl
[22] K.A. Baikalova, D.Yu. Emel'yanov, B.Sh. Kulpeshov, E.A. Palyutin, S.V. Sudoplatov, “On algebras of distributions of binary isolating formulas for theories of abelian groups and their ordered enrichments”, Russ. Math., 62:4 (2018), 1–12 | DOI | MR | Zbl
[23] D.Yu. Emel'yanov, B.Sh. Kulpeshov, S.V. Sudoplatov, “On algebras of distributions for binary formulas for quite o-minimal theories”, Algebra Logic, 57:6 (2018), 429–444 | DOI | MR | Zbl
[24] D.Yu. Emel'yanov, B.Sh. Kulpeshov, S.V. Sudoplatov, “Algebras of binary formulas for compositions of theories”, Algebra Logic, 59:4 (2020), 295–312 | DOI | MR | Zbl
[25] E.A. Palyutin, J. Saffe, S.S. Starchenko, “Models of superstable Horn theories”, Algebra Logic, 24:3 (1985), 171–210 | DOI | MR | Zbl
[26] S.V. Sudoplatov, “Syntactic approach to constructions of generic models”, Algebra Logic, 46:2 (2007), 134–146 | DOI | MR | Zbl
[27] S.V. Sudoplatov, Basedness of stable theories and properties of countable models with powerful types, Dis. cand. fiz.-mat. sc. 01.01.06, Novosibirsk, 1990
[28] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam etc, 1990 | MR | Zbl
[29] V. Harnik, L. Harrington, “Fundamentals of forking”, Ann. Pure Appl. Logic, 26:3 (1984), 245–286 | DOI | MR | Zbl
[30] R.E. Woodrow, Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976 | MR
[31] J.T. Baldwin, A. Lachlan, “On strongly minimal sets”, J. Symb. Log., 36:1 (1971), 79–96 | DOI | MR | Zbl