Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a10, author = {M. Goncharov}, title = {The description of {Rota-Baxter} operators of nonzero weight on complex general linear {Lie} algebra of order~$2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {870--879}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a10/} }
TY - JOUR AU - M. Goncharov TI - The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order~$2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 870 EP - 879 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a10/ LA - en ID - SEMR_2022_19_2_a10 ER -
%0 Journal Article %A M. Goncharov %T The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order~$2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 870-879 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a10/ %G en %F SEMR_2022_19_2_a10
M. Goncharov. The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 870-879. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a10/
[1] F.G. Tricomi, “On the finite Hilbert transformation”, Q. J. Math., Oxf. II. Ser., 2 (1951), 199–211 | DOI | MR | Zbl
[2] G. Baxter, “An analytic problem whose solution follows from a simple algebraic identity”, Pac. J. Math., 10 (1960), 731–742 | DOI | MR | Zbl
[3] F.V. Atkinson, “Some aspects of Baxter's functional equation”, J. Math. Anal. Appl., 7 (1963), 1–30 | DOI | MR | Zbl
[4] P. Cartier, “On the structure of free Baxter algebras”, Adv. Math., 9 (1972), 253–265 | DOI | MR | Zbl
[5] G.-C. Rota, “Baxter algebras and combinatorial identities. I”, Bull. Am. Math. Soc., 75 (1969), 325–329 | DOI | MR | Zbl
[6] A.A. Belavin, V.G. Drinfel'd, “Solutions of the classical Yang-Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16:3 (1983), 159–180 | DOI | MR | Zbl
[7] M.A. Semenov-Tyan-Shanskii, What is a classical r-matrix?, Funct. Anal. Appl., 17:4 (1983), 259–272 | DOI | MR | Zbl
[8] P.S. Kolesnikov, “Homogeneous averaging operators on simple finite conformal Lie algebras”, J. Math. Phys., 56:7 (2015), 071702 | DOI | MR | Zbl
[9] E.I. Konovalova, Double Lie algebras, PhD thesis, Samara, 2009
[10] Yu Pan, Q. Liu, C. Bai, L. Guo, “PostLie algebra structures on the Lie algebra $\mathrm{sl}(2,\mathbb{C})$”, Electron. J. Linear Algebra, 23 (2012), 180–197 | MR | Zbl
[11] J. Pei, C. Bai, L. Guo, “Rota-Baxter operators on $\mathrm{sl}(2,\mathbb{C})$ and solutions of the classical Yang-Baxter equation”, J. Math. Phys., 55:2 (2014), 021701 | DOI | MR | Zbl
[12] P. Benito, V. Gubarev, A. Pozhidaev, “Rota-Baxter operators on quadratic algebras”, Mediterr. J. Math., 15:5 (2018), 189 | DOI | MR | Zbl
[13] X. Tang, Y. Zhang, Q. Sun, “Rota-Baxter operators on 4-dimensional complex simple associative algebras”, Appl. Math. Comp., 229 (2014), 173–186 | DOI | MR | Zbl
[14] V.V. Sokolov, “Classification of constant solutions of the associative Yang-Baxter equation on $\mathrm{Mat}_3$”, Theor. Math. Phys., 176:3 (2013), 1156–1162 | DOI | MR | Zbl
[15] M. Goncharov, V. Gubarev, “Rota-Baxter operators of nonzero weight on the matrix algebra of order three”, Linear Multilinear Algebra, 70:6 (2022), 1055–1080 | DOI | MR | Zbl
[16] V. Gubarev, R. Kozlov, Rota-Baxter operators on $\mathrm{Cur}(sl_2(\mathbb C))$, 2022, arXiv: 2209.13141 [math.RA]