Some remarks on Do\v{s}en's logic $\mathsf{N}$ and its extensions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 562-577

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper collects some observations about Došen's logic $\mathsf{N}$, where negation is treated as a modal operator, and its extensions. We shall see what happens when we add the contraposition axiom to several important extensions of $\mathsf{N}$, show that certain extensions of $\mathsf{N}$ are canonical, and also revisit the method of filtration.
Keywords: modal negation, intuitionistic modal logic, Heyting–Ockham logic, Hype, Routley star.
@article{SEMR_2022_19_2_a1,
     author = {S. O. Speranski},
     title = {Some remarks on {Do\v{s}en's} logic $\mathsf{N}$ and its extensions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {562--577},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a1/}
}
TY  - JOUR
AU  - S. O. Speranski
TI  - Some remarks on Do\v{s}en's logic $\mathsf{N}$ and its extensions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 562
EP  - 577
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a1/
LA  - en
ID  - SEMR_2022_19_2_a1
ER  - 
%0 Journal Article
%A S. O. Speranski
%T Some remarks on Do\v{s}en's logic $\mathsf{N}$ and its extensions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 562-577
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a1/
%G en
%F SEMR_2022_19_2_a1
S. O. Speranski. Some remarks on Do\v{s}en's logic $\mathsf{N}$ and its extensions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 562-577. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a1/