On the collection process for positive words
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 439-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an approach to studying the divisibility of the exponents of the commutators that arise in collection formulas obtained for positive words of a free group. It deals with logical formulas that establish a connection between the exponents of the commutators and the structure of the positive word to which the collection process is applied. Using our approach, we obtain several generalizations of known collection formulas with some divisibility properties of the exponents.
Keywords: commutator, free group, divisibility.
Mots-clés : collection formula
@article{SEMR_2022_19_2_a0,
     author = {V. M. Leontiev},
     title = {On the collection process for positive words},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {439--459},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a0/}
}
TY  - JOUR
AU  - V. M. Leontiev
TI  - On the collection process for positive words
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 439
EP  - 459
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a0/
LA  - en
ID  - SEMR_2022_19_2_a0
ER  - 
%0 Journal Article
%A V. M. Leontiev
%T On the collection process for positive words
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 439-459
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a0/
%G en
%F SEMR_2022_19_2_a0
V. M. Leontiev. On the collection process for positive words. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 439-459. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a0/

[1] A.M. Gaglione, “A commutator identity proved by means of the Magnus algebra”, Houston J. Math., 5:2 (1979), 199–207 | MR | Zbl

[2] M. Hall jr., The theory of groups, The Macmillan Co., New York, 1959 | MR | Zbl

[3] P. Hall, “A contribution to the theory of groups of prime-power order”, Proc. Lond. Math. Soc. (2), 36:1 (1934), 29–95 | DOI | MR

[4] S.G. Kolesnikov, V.M. Leontiev, G.P. Egorychev, “Two collection formulas”, J. Group Theory, 23:4 (2020), 607–628 | DOI | MR | Zbl

[5] E.F. Krause, “On the collection process”, Proc. Am. Math. Soc., 15:3 (1964), 497–504 | DOI | MR | Zbl

[6] V.M. Leont'iev, “Combinatorial problems connected with P. Hall's collection process”, Sib. Èlectron. Math. Izv., 17 (2020), 873–889 | DOI | MR | Zbl

[7] W. Magnus, A. Karras, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publ., John Wiley, New York etc, 1966 | MR | Zbl

[8] A.I. Skopin, “Jacobi identity and P. Hall's collection formula in two types of transmetabelian groups”, J. Sov. Math., 57:6 (1991), 3507–3512 | DOI | MR | Zbl

[9] R.R. Struik, “On nilpotent products of cyclic groups. II”, Can. J. Math., 13 (1961), 557–568 | DOI | MR | Zbl

[10] H.V. Waldinger, “Two theorems in the commutator calculus”, Trans. Am. Math. Soc., 167 (1972), 389–397 | DOI | MR | Zbl