On the maximality of degrees of metrics under computable reducibility
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 248-258
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the semilattice $\mathcal{CM}_c(\mathbf{X})$ of degrees of computable metrics on a Polish space $\mathbf{X}$ under computable reducibility. It is proved that this semilattice does not have maximal elements if $\mathbf{X}$ is a noncompact space. It is also shown that the degree of the standard metric on the unit interval is maximal in the respective semilattice.
Keywords:
computable metric space, Cauchy representation, reducibility of representations, computable analysis.
@article{SEMR_2022_19_1_a9,
author = {R. Kornev},
title = {On the maximality of degrees of metrics under computable reducibility},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {248--258},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a9/}
}
R. Kornev. On the maximality of degrees of metrics under computable reducibility. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 248-258. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a9/