Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a9, author = {R. Kornev}, title = {On the maximality of degrees of metrics under computable reducibility}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {248--258}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a9/} }
R. Kornev. On the maximality of degrees of metrics under computable reducibility. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 248-258. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a9/
[1] R. Kornev, “A semilattice of degrees of computable metrics”, Sib. Math. J., 62:5 (2021), 822–841 | DOI | MR | Zbl
[2] Ch. Kreitz, K. Weihrauch, “Theory of representations”, Theoret. Comput. Sci., 38 (1985), 35–53 | DOI | MR | Zbl
[3] K. Weihrauch, Computable analysis. An introduction, Texts in Theoret. Comput. Sci. EATCS Ser., Springer, Berlin, 2000 | DOI | MR | Zbl
[4] R. Kornev, “Computable metrics above the standard real metric”, Sib. Èlectron. Mat. Izv., 18:1 (2021), 377–392 | DOI | MR | Zbl
[5] R. Dillhage, Computable functional analysis. Compact operators on computable Banach spaces and computable best approximation, PhD Thesis, Fak. Math. Inform., FernUniversität Hagen, 2012