Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a8, author = {D. V. Lytkina and A. Kh. Zhurtov}, title = {Finite groups whose maximal subgroups have only soluble proper subgroups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {237--240}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a8/} }
TY - JOUR AU - D. V. Lytkina AU - A. Kh. Zhurtov TI - Finite groups whose maximal subgroups have only soluble proper subgroups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 237 EP - 240 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a8/ LA - en ID - SEMR_2022_19_1_a8 ER -
%0 Journal Article %A D. V. Lytkina %A A. Kh. Zhurtov %T Finite groups whose maximal subgroups have only soluble proper subgroups %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 237-240 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a8/ %G en %F SEMR_2022_19_1_a8
D. V. Lytkina; A. Kh. Zhurtov. Finite groups whose maximal subgroups have only soluble proper subgroups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 237-240. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a8/
[1] J.G. Thompson, “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. AMS, 74 (1968), 383–437 | DOI | MR | Zbl
[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With comput. assist. from J. G. Thackray, Clarendon Press, Oxford, 1985 | MR | Zbl
[3] B. Huppert, Endliche Gruppen, v. I, Springer Verlag, Berlin etc, 1979 | MR | Zbl
[4] V.D. Mazurov, “Minimal permutation representation of finite simple classical groups. Special linear, symplectic, and unitary groups”, Algebra Logic, 32:3 (1993), 142–153 | DOI | MR | Zbl
[5] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[6] A.V. Vasil'ev, V.D. Mazurov, “Minimal permutation representations of finite simple orthogonal groups”, Algebra Logic, 33:6 (1994), 337–350 | DOI | MR | Zbl
[7] A.V. Vasil'ev, “Minimal permutation representations of finite simple exceptional groups of types $G_2$ and $F_4$”, Algebra Logic, 35:6 (1996), 371–383 | DOI | MR | Zbl
[8] A.V. Vasil'ev, “Minimal permutation representations of finite simple exceptional groups of types $E_6$, $E_7$, and $E_8$”, Algebra Logic, 36:5 (1997), 302–310 | DOI | MR | Zbl
[9] A.V. Vasil'ev, “Minimal permutation representations of finite simple exceptional twisted groups”, Algebra Logic, 37:1 (1998), 9–20 | DOI | MR | Zbl