Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 211-236
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct a Gröbner—Shirshov basis for the group $\Gamma^4_5$ with respect to the tower order on the words. By using this result, we apply the discrete algebraic Morse theory to find explicitly the first two differentials of the Anick resolution for $\Gamma^4_5$, and calculate the first and second Hochschild cohomology groups of the group algebra of $\Gamma^4_5$ with coefficients in the trivial $1$-dimensional bimodule over a field $\mathbb{k}$ of characteristic zero.
Keywords:
Gröbner—Shirshov basis, Anick resolution, Hochschild cohomology.
@article{SEMR_2022_19_1_a7,
author = {Hassan Alhussein},
title = {Gr\"obner--Shirshov basis and {Hochschild} cohomology of the group $\Gamma ^4_5$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {211--236},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/}
}
TY - JOUR AU - Hassan Alhussein TI - Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 211 EP - 236 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/ LA - en ID - SEMR_2022_19_1_a7 ER -
Hassan Alhussein. Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 211-236. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/