Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a7, author = {Hassan Alhussein}, title = {Gr\"obner--Shirshov basis and {Hochschild} cohomology of the group $\Gamma ^4_5$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {211--236}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/} }
TY - JOUR AU - Hassan Alhussein TI - Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 211 EP - 236 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/ LA - en ID - SEMR_2022_19_1_a7 ER -
Hassan Alhussein. Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 211-236. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/
[1] D.J. Anick, “On the homology of associative algebras”, Trans. Am. Math. Soc., 296:2 (1986), 641–659 | DOI | MR | Zbl
[2] V.A. Ufnarovsky, “Combinatorial and asymptotic methods in algebra”, Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, 57, VINTI, M., 1990, 5–177 | Zbl
[3] S. Cojocaru, A. Podoplelov, V. Ufnarovski, “Non-commutative Gröbner bases and Anick's resolution”, Computational methods for representations of groups and algebras, Proceedings of the Euroconference (Essen, Germany, April 1-5, 1997), Prog. Math., 173, eds. Dräxler P. et al., Birkhäuser, Basel, 1999, 139–159 | MR | Zbl
[4] M. Jöllenbeck, V. Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Am. Math. Soc., 923, AMS, Providence, 2009 | MR | Zbl
[5] R. Forman, “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl
[6] R. Forman, “A user's guide to discrete Morse theory”, Sémin. Lothar. Comb., 48 (2002), B48c | MR | Zbl
[7] V.O. Manturov, D.A. Fedoseev, S. Kim, I.M. Nikonov, “On groups $G^k_n$ and $\Gamma^k_n$: a study of manifolds, dynamics, and invariants”, Bull. Math. Sci., 11:2 (2021), 2150004 | DOI | MR | Zbl
[8] V.O. Manturov, Non-Reidemeister knot theory and its applications in dynamical systems, geometry, and topology, 2015, arXiv: 1501.05208
[9] V.O. Manturov, “Parity in knot theory”, Sb. Math., 201:5 (2010), 693–733 | DOI | MR | Zbl
[10] V.O. Manturov, “The groups $ G^2_n$ and Coxeter groups”, Russ. Math. Surv., 72:2 (2017), 378–380 | DOI | MR | Zbl
[11] V.O. Manturov, “The groups $G^k_n$ and fundamental groups of configuration spaces”, J. Knot Theory Ramifications, 26:6 (2017), 1742004 | DOI | MR | Zbl
[12] V.O. Manturov, J. Wu, “$G^k_n$-groups for simplicial complexes and the word problem on $G^2(K)$”, J. Knot Theory Ramifications, 27:13 (2018), 1842013 | DOI | MR | Zbl
[13] S. Kim, V.O. Manturov, “Artin's braids, braids for three space, and groups $\Gamma^4_n$ and $G^k_n$”, J. Knot Theory Ramifications, 28:10 (2019), 1950063 | DOI | MR | Zbl
[14] V. Lopatkin, “Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis”, J. Algebra Appl., 15:5 (2016), 1650082 | DOI | MR | Zbl
[15] S. Maclane, Homology, Springer-Verl., Berlin etc., 1963 | MR | Zbl
[16] L.A. Bokut', Y. Chen, “Gröbner-Shirshov bases and their calculation”, Bull. Math. Sci., 4:3 (2014), 325–395 | DOI | MR | Zbl
[17] E. Sköldberg, “Morse theory from an algebraic viewpoint”, Trans. Am. Math. Soc., 358:1 (2006), 115–129 | DOI | MR | Zbl
[18] L.A. Bokut', “Imbeddings into simple associative algebras”, Algebra Logika, 15 (1976), 117–142 | DOI | MR | Zbl
[19] A.I. Shirshov, “Some algorithmic problem for Lie algebras”, Sib. Mat. Z., 3 (1962), 292–296 ; SIGSAM Bull., 33:2 (1999), 3–6 | MR | Zbl | DOI | Zbl
[20] H. Hironaka, “Resolution of singulatities of an algebtaic variety over a field if characteristic zero. I, II”, Ann. Math. (2), 79 (1964), 109–203 ; 205–326 | DOI | MR | Zbl | Zbl
[21] B. Buchberger, “An algorithmical criteria for the solvability of algebraic systems of equations”, Aequationes Math., 4 (1970), 374–383 | DOI | MR | Zbl
[22] H. AlHussein, P.S. Kolesnikov, “The Anick complex and the Hochschild cohomology of the Manturov (2,3)-group”, Sib. Math. J., 61:1 (2020), 11–20 | DOI | MR | Zbl