Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 211-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct a Gröbner—Shirshov basis for the group $\Gamma^4_5$ with respect to the tower order on the words. By using this result, we apply the discrete algebraic Morse theory to find explicitly the first two differentials of the Anick resolution for $\Gamma^4_5$, and calculate the first and second Hochschild cohomology groups of the group algebra of $\Gamma^4_5$ with coefficients in the trivial $1$-dimensional bimodule over a field $\mathbb{k}$ of characteristic zero.
Keywords: Gröbner—Shirshov basis, Anick resolution, Hochschild cohomology.
@article{SEMR_2022_19_1_a7,
     author = {Hassan Alhussein},
     title = {Gr\"obner--Shirshov basis and {Hochschild} cohomology of the group $\Gamma ^4_5$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {211--236},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/}
}
TY  - JOUR
AU  - Hassan Alhussein
TI  - Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 211
EP  - 236
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/
LA  - en
ID  - SEMR_2022_19_1_a7
ER  - 
%0 Journal Article
%A Hassan Alhussein
%T Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 211-236
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/
%G en
%F SEMR_2022_19_1_a7
Hassan Alhussein. Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 211-236. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a7/

[1] D.J. Anick, “On the homology of associative algebras”, Trans. Am. Math. Soc., 296:2 (1986), 641–659 | DOI | MR | Zbl

[2] V.A. Ufnarovsky, “Combinatorial and asymptotic methods in algebra”, Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, 57, VINTI, M., 1990, 5–177 | Zbl

[3] S. Cojocaru, A. Podoplelov, V. Ufnarovski, “Non-commutative Gröbner bases and Anick's resolution”, Computational methods for representations of groups and algebras, Proceedings of the Euroconference (Essen, Germany, April 1-5, 1997), Prog. Math., 173, eds. Dräxler P. et al., Birkhäuser, Basel, 1999, 139–159 | MR | Zbl

[4] M. Jöllenbeck, V. Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Am. Math. Soc., 923, AMS, Providence, 2009 | MR | Zbl

[5] R. Forman, “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl

[6] R. Forman, “A user's guide to discrete Morse theory”, Sémin. Lothar. Comb., 48 (2002), B48c | MR | Zbl

[7] V.O. Manturov, D.A. Fedoseev, S. Kim, I.M. Nikonov, “On groups $G^k_n$ and $\Gamma^k_n$: a study of manifolds, dynamics, and invariants”, Bull. Math. Sci., 11:2 (2021), 2150004 | DOI | MR | Zbl

[8] V.O. Manturov, Non-Reidemeister knot theory and its applications in dynamical systems, geometry, and topology, 2015, arXiv: 1501.05208

[9] V.O. Manturov, “Parity in knot theory”, Sb. Math., 201:5 (2010), 693–733 | DOI | MR | Zbl

[10] V.O. Manturov, “The groups $ G^2_n$ and Coxeter groups”, Russ. Math. Surv., 72:2 (2017), 378–380 | DOI | MR | Zbl

[11] V.O. Manturov, “The groups $G^k_n$ and fundamental groups of configuration spaces”, J. Knot Theory Ramifications, 26:6 (2017), 1742004 | DOI | MR | Zbl

[12] V.O. Manturov, J. Wu, “$G^k_n$-groups for simplicial complexes and the word problem on $G^2(K)$”, J. Knot Theory Ramifications, 27:13 (2018), 1842013 | DOI | MR | Zbl

[13] S. Kim, V.O. Manturov, “Artin's braids, braids for three space, and groups $\Gamma^4_n$ and $G^k_n$”, J. Knot Theory Ramifications, 28:10 (2019), 1950063 | DOI | MR | Zbl

[14] V. Lopatkin, “Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis”, J. Algebra Appl., 15:5 (2016), 1650082 | DOI | MR | Zbl

[15] S. Maclane, Homology, Springer-Verl., Berlin etc., 1963 | MR | Zbl

[16] L.A. Bokut', Y. Chen, “Gröbner-Shirshov bases and their calculation”, Bull. Math. Sci., 4:3 (2014), 325–395 | DOI | MR | Zbl

[17] E. Sköldberg, “Morse theory from an algebraic viewpoint”, Trans. Am. Math. Soc., 358:1 (2006), 115–129 | DOI | MR | Zbl

[18] L.A. Bokut', “Imbeddings into simple associative algebras”, Algebra Logika, 15 (1976), 117–142 | DOI | MR | Zbl

[19] A.I. Shirshov, “Some algorithmic problem for Lie algebras”, Sib. Mat. Z., 3 (1962), 292–296 ; SIGSAM Bull., 33:2 (1999), 3–6 | MR | Zbl | DOI | Zbl

[20] H. Hironaka, “Resolution of singulatities of an algebtaic variety over a field if characteristic zero. I, II”, Ann. Math. (2), 79 (1964), 109–203 ; 205–326 | DOI | MR | Zbl | Zbl

[21] B. Buchberger, “An algorithmical criteria for the solvability of algebraic systems of equations”, Aequationes Math., 4 (1970), 374–383 | DOI | MR | Zbl

[22] H. AlHussein, P.S. Kolesnikov, “The Anick complex and the Hochschild cohomology of the Manturov (2,3)-group”, Sib. Math. J., 61:1 (2020), 11–20 | DOI | MR | Zbl