Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a5, author = {A. J. O. Andrade and G. C. Moraes and R. N. Ferreira and B. L. M. Ferreira}, title = {Nonlinear $*${-Jordan-type} derivations on alternative $*$-algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {125--137}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/} }
TY - JOUR AU - A. J. O. Andrade AU - G. C. Moraes AU - R. N. Ferreira AU - B. L. M. Ferreira TI - Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 125 EP - 137 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/ LA - en ID - SEMR_2022_19_1_a5 ER -
%0 Journal Article %A A. J. O. Andrade %A G. C. Moraes %A R. N. Ferreira %A B. L. M. Ferreira %T Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 125-137 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/ %G en %F SEMR_2022_19_1_a5
A. J. O. Andrade; G. C. Moraes; R. N. Ferreira; B. L. M. Ferreira. Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 125-137. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/
[1] M. Brešar, M. Fošner, “On ring with involution equipped with some new product”, Publ. Math., 57:1-2 (2000), 121–134 | MR | Zbl
[2] J.C. da Motta Ferreira, B.L.M. Ferreira, “Additivity of n-multiplicative maps on alternative rings”, Commun. Algebra, 44:4 (2016), 1557–1568 | DOI | MR | Zbl
[3] L. Dai, F. Lu, “Nonlinear maps preserving Jordan $*$-products”, J. Math. Anal. Appl., 409:1 (2014), 180–188 | DOI | MR | Zbl
[4] V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, “Nonlinear $*$-Jordan triple derivations on prime $*$-algebras”, Rocky Mt. J. Math., 50:2 (2020), 543–549 | DOI | MR | Zbl
[5] B.L.M. Ferreira, “Additivity of elementary maps on alternative rings”, Algebra Discrete Math., 28:1 (2019), 94–106 | MR | Zbl
[6] B.L.M. Ferreira, B.T. Costa, “$*$-Jordan-type maps on $C^*$-algebras”, Commun. Algebra, 49:12 (2021), 5073–5082 | DOI | MR | Zbl
[7] J.C. da Motta Ferreira, B.L.M. Ferreira, “Additivity of $n$-multiplicative maps on alternative rings”, Commun. Algebra, 44:4 (2016), 1557–1568 | DOI | MR | Zbl
[8] B.L.M. Ferreira, H. Guzzo, R.N. Ferreira, “An approach between the multiplicative and additive structure of a Jordan ring”, Bull. Iran. Math. Soc., 47:4 (2021), 961–975 | DOI | MR | Zbl
[9] B.L.M. Ferreira, H. Guzzo, “Lie maps on alternative rings”, Boll. Unione Mat. Ital., 13:2 (2020), 181–192 | DOI | MR | Zbl
[10] B.L.M. Ferreira, H. Guzzo, I. Kaygorodov, “Lie maps on alternative rings preserving idempotents”, Colloq. Math., 166:2 (2021), 227–238 | DOI | MR | Zbl
[11] M.C. García, Á.R. Palacios, Non-associative normed algebras, v. 1, Encyclopedia of Mathematics and its Applications, 154, The Vidav-Palmer and Gelfand-Naimark theorems, Cambridge University Press, Cambridge, 2014 | MR | Zbl
[12] M.C. García , Á.R. Palacios, Non-associative normed algebras, v. 2, Encyclopedia of Mathematics and its Applications, 167, Representation theory and the Zel'manov approach, Cambridge University Press, Cambridge, 2018 | MR | Zbl
[13] I. Hentzel, E. Kleinfeld, H. Smith, “Alternative rings with idempotent”, J. Algebra, 64 (1980), 325–335 | DOI | MR | Zbl
[14] D. Huo, B. Zheng, H. Liu, “Nonlinear maps preserving Jordan triple $\eta$-$*$-products”, J. Math. Anal. Appl., 430:2 (2015), 830–844 | DOI | MR | Zbl
[15] C. Li, F. Lu, X. Fang, “Nonlinear $\{\xi\ $-Jordan $*$-derivations on von Neumann algebras”, Linear Multilinear Algebra, 62:4 (2014), 466–473 | DOI | MR | Zbl
[16] C. Li, F. Lu, X. Fang, “Nonlinear mappings preserving product $XY +Y X^* $ on factor von Neumann algebras”, Linear Algebra Appl., 438:5 (2013), 2339–2345 | DOI | MR | Zbl
[17] C. Li, F. Lu, T. Wang, “Nonlinear maps preserving the Jordan triple $*$-product on von Neumann algebras”, Ann. Funct. Anal., 7:3 (2016), 496–507 | DOI | MR | Zbl
[18] C. Li, F. Lu, “Nonlinear maps preserving the Jordan triple $1$-$*$-product on von Neumann algebras”, Complex Anal. Oper. Theory, 11:1 (2017), 109–117 | DOI | MR | Zbl
[19] L. Molnár, “A condition for a subspace of $B(H)$ to be an ideal”, Linear Algebra Appl., 235 (1996), 229–234 | DOI | MR | Zbl
[20] P. Šemrl, “Quadratic functionals and Jordan $*$-derivations”, Stud. Math., 97:3 (1991), 157–165 | MR | Zbl
[21] P. Šemrl, “On Jordan $*$-derivations and an application”, Colloq. Math., 59:2 (1990), 241–251 | DOI | MR | Zbl
[22] A. Taghavi, H. Rohi, V. Darvish, “Non-linear $*$-Jordan derivations on von Neumann algebras”, Linear Multilinear Algebra, 64:3 (2016), 426–439 | DOI | MR | Zbl
[23] F. Zhang, “Nonlinear skew Jordan derivable maps on factor von Neumann algebras”, Linear Multilinear Algebra, 64:10 (2016), 2090–2103 | DOI | MR | Zbl
[24] F. Zhao, C. Li, “Nonlinear $*$-Jordan triple derivations on von Neumann algebras”, Math. Slovaca, 68:1 (2018), 163–170 | DOI | MR | Zbl
[25] F. Zhao, C. Li, “Nonlinear maps preserving the Jordan triple $*$-product between factors”, Indag. Math., New Ser., 29:2 (2018), 619–627 | DOI | MR | Zbl