Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 125-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an unital alternative $*$-algebra. Assume that $A$ contains a nontrivial symmetric idempotent element $e$ which satisfies $xA \cdot e = 0$ implies $x = 0$ and $xA \cdot (1_A - e) = 0$ implies $x = 0$. In this paper, it is shown that $\Phi$ is a nonlinear $*$-Jordan-type derivation on A if and only if $\Phi$ is an additive $*$-derivation. As application, we get a result on alternative $W^{*}$-algebras.
Keywords: $*$-Jordan-type derivation, $*$-derivation, alternative $*$-algebras.
@article{SEMR_2022_19_1_a5,
     author = {A. J. O. Andrade and G. C. Moraes and R. N. Ferreira and B. L. M. Ferreira},
     title = {Nonlinear $*${-Jordan-type} derivations on alternative $*$-algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {125--137},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/}
}
TY  - JOUR
AU  - A. J. O. Andrade
AU  - G. C. Moraes
AU  - R. N. Ferreira
AU  - B. L. M. Ferreira
TI  - Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 125
EP  - 137
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/
LA  - en
ID  - SEMR_2022_19_1_a5
ER  - 
%0 Journal Article
%A A. J. O. Andrade
%A G. C. Moraes
%A R. N. Ferreira
%A B. L. M. Ferreira
%T Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 125-137
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/
%G en
%F SEMR_2022_19_1_a5
A. J. O. Andrade; G. C. Moraes; R. N. Ferreira; B. L. M. Ferreira. Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 125-137. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/

[1] M. Brešar, M. Fošner, “On ring with involution equipped with some new product”, Publ. Math., 57:1-2 (2000), 121–134 | MR | Zbl

[2] J.C. da Motta Ferreira, B.L.M. Ferreira, “Additivity of n-multiplicative maps on alternative rings”, Commun. Algebra, 44:4 (2016), 1557–1568 | DOI | MR | Zbl

[3] L. Dai, F. Lu, “Nonlinear maps preserving Jordan $*$-products”, J. Math. Anal. Appl., 409:1 (2014), 180–188 | DOI | MR | Zbl

[4] V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, “Nonlinear $*$-Jordan triple derivations on prime $*$-algebras”, Rocky Mt. J. Math., 50:2 (2020), 543–549 | DOI | MR | Zbl

[5] B.L.M. Ferreira, “Additivity of elementary maps on alternative rings”, Algebra Discrete Math., 28:1 (2019), 94–106 | MR | Zbl

[6] B.L.M. Ferreira, B.T. Costa, “$*$-Jordan-type maps on $C^*$-algebras”, Commun. Algebra, 49:12 (2021), 5073–5082 | DOI | MR | Zbl

[7] J.C. da Motta Ferreira, B.L.M. Ferreira, “Additivity of $n$-multiplicative maps on alternative rings”, Commun. Algebra, 44:4 (2016), 1557–1568 | DOI | MR | Zbl

[8] B.L.M. Ferreira, H. Guzzo, R.N. Ferreira, “An approach between the multiplicative and additive structure of a Jordan ring”, Bull. Iran. Math. Soc., 47:4 (2021), 961–975 | DOI | MR | Zbl

[9] B.L.M. Ferreira, H. Guzzo, “Lie maps on alternative rings”, Boll. Unione Mat. Ital., 13:2 (2020), 181–192 | DOI | MR | Zbl

[10] B.L.M. Ferreira, H. Guzzo, I. Kaygorodov, “Lie maps on alternative rings preserving idempotents”, Colloq. Math., 166:2 (2021), 227–238 | DOI | MR | Zbl

[11] M.C. García, Á.R. Palacios, Non-associative normed algebras, v. 1, Encyclopedia of Mathematics and its Applications, 154, The Vidav-Palmer and Gelfand-Naimark theorems, Cambridge University Press, Cambridge, 2014 | MR | Zbl

[12] M.C. García , Á.R. Palacios, Non-associative normed algebras, v. 2, Encyclopedia of Mathematics and its Applications, 167, Representation theory and the Zel'manov approach, Cambridge University Press, Cambridge, 2018 | MR | Zbl

[13] I. Hentzel, E. Kleinfeld, H. Smith, “Alternative rings with idempotent”, J. Algebra, 64 (1980), 325–335 | DOI | MR | Zbl

[14] D. Huo, B. Zheng, H. Liu, “Nonlinear maps preserving Jordan triple $\eta$-$*$-products”, J. Math. Anal. Appl., 430:2 (2015), 830–844 | DOI | MR | Zbl

[15] C. Li, F. Lu, X. Fang, “Nonlinear $\{\xi\ $-Jordan $*$-derivations on von Neumann algebras”, Linear Multilinear Algebra, 62:4 (2014), 466–473 | DOI | MR | Zbl

[16] C. Li, F. Lu, X. Fang, “Nonlinear mappings preserving product $XY +Y X^* $ on factor von Neumann algebras”, Linear Algebra Appl., 438:5 (2013), 2339–2345 | DOI | MR | Zbl

[17] C. Li, F. Lu, T. Wang, “Nonlinear maps preserving the Jordan triple $*$-product on von Neumann algebras”, Ann. Funct. Anal., 7:3 (2016), 496–507 | DOI | MR | Zbl

[18] C. Li, F. Lu, “Nonlinear maps preserving the Jordan triple $1$-$*$-product on von Neumann algebras”, Complex Anal. Oper. Theory, 11:1 (2017), 109–117 | DOI | MR | Zbl

[19] L. Molnár, “A condition for a subspace of $B(H)$ to be an ideal”, Linear Algebra Appl., 235 (1996), 229–234 | DOI | MR | Zbl

[20] P. Šemrl, “Quadratic functionals and Jordan $*$-derivations”, Stud. Math., 97:3 (1991), 157–165 | MR | Zbl

[21] P. Šemrl, “On Jordan $*$-derivations and an application”, Colloq. Math., 59:2 (1990), 241–251 | DOI | MR | Zbl

[22] A. Taghavi, H. Rohi, V. Darvish, “Non-linear $*$-Jordan derivations on von Neumann algebras”, Linear Multilinear Algebra, 64:3 (2016), 426–439 | DOI | MR | Zbl

[23] F. Zhang, “Nonlinear skew Jordan derivable maps on factor von Neumann algebras”, Linear Multilinear Algebra, 64:10 (2016), 2090–2103 | DOI | MR | Zbl

[24] F. Zhao, C. Li, “Nonlinear $*$-Jordan triple derivations on von Neumann algebras”, Math. Slovaca, 68:1 (2018), 163–170 | DOI | MR | Zbl

[25] F. Zhao, C. Li, “Nonlinear maps preserving the Jordan triple $*$-product between factors”, Indag. Math., New Ser., 29:2 (2018), 619–627 | DOI | MR | Zbl