Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 125-137

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an unital alternative $*$-algebra. Assume that $A$ contains a nontrivial symmetric idempotent element $e$ which satisfies $xA \cdot e = 0$ implies $x = 0$ and $xA \cdot (1_A - e) = 0$ implies $x = 0$. In this paper, it is shown that $\Phi$ is a nonlinear $*$-Jordan-type derivation on A if and only if $\Phi$ is an additive $*$-derivation. As application, we get a result on alternative $W^{*}$-algebras.
Keywords: $*$-Jordan-type derivation, $*$-derivation, alternative $*$-algebras.
@article{SEMR_2022_19_1_a5,
     author = {A. J. O. Andrade and G. C. Moraes and R. N. Ferreira and B. L. M. Ferreira},
     title = {Nonlinear $*${-Jordan-type} derivations on alternative $*$-algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {125--137},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/}
}
TY  - JOUR
AU  - A. J. O. Andrade
AU  - G. C. Moraes
AU  - R. N. Ferreira
AU  - B. L. M. Ferreira
TI  - Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 125
EP  - 137
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/
LA  - en
ID  - SEMR_2022_19_1_a5
ER  - 
%0 Journal Article
%A A. J. O. Andrade
%A G. C. Moraes
%A R. N. Ferreira
%A B. L. M. Ferreira
%T Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 125-137
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/
%G en
%F SEMR_2022_19_1_a5
A. J. O. Andrade; G. C. Moraes; R. N. Ferreira; B. L. M. Ferreira. Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 125-137. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a5/