Properties of ranks for families of strongly minimal theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 120-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study rank properties for families of strongly minimal theories. A criterion for $e$-total transcendence of families of strongly minimal theories is obtained in terms of the description of the language symbols.
Keywords: strongly minimal theory, family of theories, rank for a family of theories.
Mots-clés : sentence
@article{SEMR_2022_19_1_a4,
     author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Properties of ranks for families of strongly minimal theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {120--124},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a4/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Properties of ranks for families of strongly minimal theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 120
EP  - 124
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a4/
LA  - en
ID  - SEMR_2022_19_1_a4
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Properties of ranks for families of strongly minimal theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 120-124
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a4/
%G en
%F SEMR_2022_19_1_a4
B. Sh. Kulpeshov; S. V. Sudoplatov. Properties of ranks for families of strongly minimal theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 120-124. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a4/

[1] E. Rosen, “Some Aspects of Model Theory and Finite Structures”, The Bulletin of Symbolic Logic, 8:3 (2002), 380–403 | Zbl

[2] J. Väänänen, “Pseudo-finite model theory”, Mat. Contemp., 24, 2003, 169–183 | Zbl

[3] G. Cherlin, E. Hrushovski, Finite structures with few types, Annals of Mathematics Studies, 152, Princeton University Press, Princeton, 2003 | Zbl

[4] D. Macpherson, Ch. Steinhorn, “Definability in classes of finite structures”, Finite and algorithmic model theory, London Matheematical Society Lecture Notes Series, 379, eds. J. Esparza et al., Cambridge University Press, Cambridge, 2011, 140–176 | Zbl

[5] N.D. Markhabatov, S.V. Sudoplatov, “Definable families of theories, related calculi and ranks”, Sib. Èlectron. Mat. Izv., 17 (2020), 700–714 | Zbl

[6] S.V. Sudoplatov, “Ranks for families of theories and their spectra”, Lobachevskii J. Math., 42:12 (2021), 2959–2968 | Zbl

[7] N.D. Markhabatov, S.V. Sudoplatov, “Ranks for families of all theories of given languages”, Eurasian Math. J., 12:2 (2021), 52–58 | Zbl

[8] N.D. Markhabatov, “Ranks for families of permutation theories”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 28 (2019), 85–94 | Zbl

[9] In.I. Pavlyuk, S.V. Sudoplatov, “Ranks for families of theories of abelian groups”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 28 (2019), 95–112 | Zbl

[10] B.Sh. Kulpeshov, S.V. Sudoplatov, “Ranks and approximations for families of ordered theories”, Algebra and model theory, 12, eds. A.G. Pinus, E.N. Poroshenko, S.V. Sudoplatov, Novosibirsk State Technical University, Novosibirsk, 2019, 32–40

[11] B.Sh. Kulpeshov, In.I. Pavlyuk, S.V. Sudoplatov, “On criterion of total transcendency for families of ordered theories”, Abstracts of International Conference "Maltsev Meetings" (Novosibirsk, 2021)

[12] J.T. Baldwin, A.H. Lachlan, “On strongly minimal sets”, J. Symb. Log., 36:1 (1971), 79–96 | Zbl