Capacities of generalized condensers with $A_1$-Muckenhoupt weight
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 164-186

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the relations (related to $A_1$-Muckenhoupt weight) between two capacities of a generalized condenser and the moduli of vector measures on the curve configuration.
Keywords: capacity of condenser, Muckenhoupt weight, modulus of vector measures.
@article{SEMR_2022_19_1_a30,
     author = {Yu. V. Dymchenko and V. A. Shlyk},
     title = {Capacities of generalized condensers with $A_1${-Muckenhoupt} weight},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {164--186},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a30/}
}
TY  - JOUR
AU  - Yu. V. Dymchenko
AU  - V. A. Shlyk
TI  - Capacities of generalized condensers with $A_1$-Muckenhoupt weight
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 164
EP  - 186
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a30/
LA  - en
ID  - SEMR_2022_19_1_a30
ER  - 
%0 Journal Article
%A Yu. V. Dymchenko
%A V. A. Shlyk
%T Capacities of generalized condensers with $A_1$-Muckenhoupt weight
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 164-186
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a30/
%G en
%F SEMR_2022_19_1_a30
Yu. V. Dymchenko; V. A. Shlyk. Capacities of generalized condensers with $A_1$-Muckenhoupt weight. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 164-186. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a30/