Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a30, author = {Yu. V. Dymchenko and V. A. Shlyk}, title = {Capacities of generalized condensers with $A_1${-Muckenhoupt} weight}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {164--186}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a30/} }
TY - JOUR AU - Yu. V. Dymchenko AU - V. A. Shlyk TI - Capacities of generalized condensers with $A_1$-Muckenhoupt weight JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 164 EP - 186 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a30/ LA - en ID - SEMR_2022_19_1_a30 ER -
Yu. V. Dymchenko; V. A. Shlyk. Capacities of generalized condensers with $A_1$-Muckenhoupt weight. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 164-186. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a30/
[1] P.S. Aleksandrov, Lektsii po analiticheskoy geometrii, Nauka, M., 1968 | MR
[2] H. Aikawa, M. Ohtsuka, “Extremal lenth of vector measures”, Ann. Acad. Sci. Fenn., Math., 24:1 (1999), 61–88 | MR | Zbl
[3] V.V. Aseev, “On a modulus property”, Sov. Math., Dokl., 12 (1971), 1409–1411 | MR | Zbl
[4] V.I. Bogachev, O.G. Smolyanov, Real and functional analysis, Springer, Cham, 2020 | MR | Zbl
[5] V.N. Dubinin, “Asymptotics for the capacity of a condenser with variable potential levels”, Sib. Math. J., 61:4 (2020), 626–631 | DOI | MR | Zbl
[6] Y.V. Dymchenko, “Equality of the capacity and module of a condenser on a surface”, J. Math. Sci., New York, 118:1 (2003), 4795–4807 | DOI | MR | Zbl
[7] Y.V. Dymchenko, V.A. Shlyk, “On a problem of Dubinin for the capacity of a condenser with a finite number of plates”, Math. Notes, 103:6 (2018), 901–910 | DOI | MR | Zbl
[8] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[9] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl
[10] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer, New York, 2009 | MR | Zbl
[11] V.G. Maz'ya, Sobolev spaces, Springer, Berlin etc, 1985 | MR | Zbl
[12] B. Muckenhoupt, “Weighted norm unequalities for the Hardy maximal function”, Trans. Am. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl
[13] M. Ohtsuka, “Extremal length and precise functions. With a preface by Fumi-Yuki Maeda”, GAKUTO International Series. Mathematical Sciences and Applications, 19, Gakkōtosho, Tokyo, 2003 | MR | Zbl
[14] W. Rudin, Real and complex analysis, 3rd Ed., McGraw-Hill, New York, 1987 | MR | Zbl
[15] I.M. Tarasova, V.A. Shlyk, “Weighted Sobolev spaces, capacities and exceptional sets”, Sib. Èlectron. Mat. Izv., 17 (2020), 1552–1570 | DOI | MR | Zbl
[16] B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Springer, Berlin, 2000 | MR | Zbl