The time complexity of some algorithms for generating the spectra of finite simple groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 101-108

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum $\omega(G)$ is the set of orders of elements of a finite group $G$. We consider the problem of generating the spectrum of a finite nonabelian simple group $G$ given by the degree of $G$ if $G$ is an alternating group, or the Lie type, Lie rank and order of the underlying field if $G$ is a group of Lie type.
Keywords: spectrum, finite simple group, algorithm, time complexity.
@article{SEMR_2022_19_1_a3,
     author = {A. A. Buturlakin},
     title = {The time complexity of some algorithms for generating the spectra of finite simple groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/}
}
TY  - JOUR
AU  - A. A. Buturlakin
TI  - The time complexity of some algorithms for generating the spectra of finite simple groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 101
EP  - 108
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/
LA  - en
ID  - SEMR_2022_19_1_a3
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%T The time complexity of some algorithms for generating the spectra of finite simple groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 101-108
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/
%G en
%F SEMR_2022_19_1_a3
A. A. Buturlakin. The time complexity of some algorithms for generating the spectra of finite simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 101-108. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/