The time complexity of some algorithms for generating the spectra of finite simple groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 101-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum $\omega(G)$ is the set of orders of elements of a finite group $G$. We consider the problem of generating the spectrum of a finite nonabelian simple group $G$ given by the degree of $G$ if $G$ is an alternating group, or the Lie type, Lie rank and order of the underlying field if $G$ is a group of Lie type.
Keywords: spectrum, finite simple group, algorithm, time complexity.
@article{SEMR_2022_19_1_a3,
     author = {A. A. Buturlakin},
     title = {The time complexity of some algorithms for generating the spectra of finite simple groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/}
}
TY  - JOUR
AU  - A. A. Buturlakin
TI  - The time complexity of some algorithms for generating the spectra of finite simple groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 101
EP  - 108
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/
LA  - en
ID  - SEMR_2022_19_1_a3
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%T The time complexity of some algorithms for generating the spectra of finite simple groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 101-108
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/
%G en
%F SEMR_2022_19_1_a3
A. A. Buturlakin. The time complexity of some algorithms for generating the spectra of finite simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 101-108. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/

[1] A.S. Bang, “Number theoretic investigations”, Zeuthen Tidskr. (5), 4 (1886), 70–80 ; 130–137 | Zbl

[2] A.A. Buturlakin, “Spectra of finite linear and unitary groups”, Algebra Logic, 47:2 (2008), 91–99 | DOI | MR | Zbl

[3] A.A. Buturlakin, “Spectra of finite symplectic and orthogonal groups”, Sib. Adv. Math., 21:3 (2011), 176–210 | DOI | MR | Zbl

[4] A.A. Buturlakin, “Spectra of groups $E_8(q)$”, Algebra Logic, 57:1 (2018), 1–8 | DOI | MR | Zbl

[5] A.A. Buturlakin, A.V. Vasil'ev, “The graph of atomic divisors and recognition of finite simple groups”, J. Algebra, 537 (2019), 478–502 | DOI | MR | Zbl

[6] P. Erdős, P. Turán, “On some problems of a statistical group-theory. IV”, Acta Math. Acad. Sci. Hung., 19 (1968), 413–435 | DOI | MR | Zbl

[7] J.-P. Massias, J.-L. Nicolas, G. Robin, “Effective bounds for the maximal order of an element in the symmetric group”, Math. Comput., 53:188 (1989), 665–678 | DOI | MR | Zbl

[8] J.-L. Nicolas, G. Robin, “Explicit upper estimates for the number of divisors of $n$”, Can. Math. Bull., 26:4 (1983), 485–492 | DOI | MR | Zbl

[9] K. Zsigmondy, “On the theory of power residues”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | MR | Zbl