The time complexity of some algorithms for generating the spectra of finite simple groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 101-108
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectrum $\omega(G)$ is the set of orders of elements of a finite group $G$. We consider the problem of generating the spectrum of a finite nonabelian simple group $G$ given by the degree of $G$ if $G$ is an alternating group, or the Lie type, Lie rank and order of the underlying field if $G$ is a group of Lie type.
Keywords:
spectrum, finite simple group, algorithm, time complexity.
@article{SEMR_2022_19_1_a3,
author = {A. A. Buturlakin},
title = {The time complexity of some algorithms for generating the spectra of finite simple groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {101--108},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/}
}
TY - JOUR AU - A. A. Buturlakin TI - The time complexity of some algorithms for generating the spectra of finite simple groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 101 EP - 108 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/ LA - en ID - SEMR_2022_19_1_a3 ER -
%0 Journal Article %A A. A. Buturlakin %T The time complexity of some algorithms for generating the spectra of finite simple groups %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 101-108 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/ %G en %F SEMR_2022_19_1_a3
A. A. Buturlakin. The time complexity of some algorithms for generating the spectra of finite simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 101-108. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a3/