Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 91-100
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of the paper is to study the problem of summation of functions of a discrete variable on integer points in a rational parallelepiped. Our method is based on Borel’s transform of power series. Integral representation for discrete antiderivative and a new variant of the Euler-Maclaurin formula are described. Consequently new identities satisfied by Bernoulli’s polynomials are obtained.
Keywords:
summation of functions, Euler-Maclaurin formula, Borel transform of power series.
@article{SEMR_2022_19_1_a28,
author = {E. K. Leinartas and M. E. Petrochenko},
title = {Multidimensional analogues of the {Euler-Maclaurin} summation formula and the {Borel} transform of power series},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {91--100},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/}
}
TY - JOUR AU - E. K. Leinartas AU - M. E. Petrochenko TI - Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 91 EP - 100 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/ LA - ru ID - SEMR_2022_19_1_a28 ER -
%0 Journal Article %A E. K. Leinartas %A M. E. Petrochenko %T Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 91-100 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/ %G ru %F SEMR_2022_19_1_a28
E. K. Leinartas; M. E. Petrochenko. Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 91-100. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/