Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 91-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to study the problem of summation of functions of a discrete variable on integer points in a rational parallelepiped. Our method is based on Borel’s transform of power series. Integral representation for discrete antiderivative and a new variant of the Euler-Maclaurin formula are described. Consequently new identities satisfied by Bernoulli’s polynomials are obtained.
Keywords: summation of functions, Euler-Maclaurin formula, Borel transform of power series.
@article{SEMR_2022_19_1_a28,
     author = {E. K. Leinartas and M. E. Petrochenko},
     title = {Multidimensional analogues of the {Euler-Maclaurin} summation formula and the {Borel} transform of power series},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/}
}
TY  - JOUR
AU  - E. K. Leinartas
AU  - M. E. Petrochenko
TI  - Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 91
EP  - 100
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/
LA  - ru
ID  - SEMR_2022_19_1_a28
ER  - 
%0 Journal Article
%A E. K. Leinartas
%A M. E. Petrochenko
%T Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 91-100
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/
%G ru
%F SEMR_2022_19_1_a28
E. K. Leinartas; M. E. Petrochenko. Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 91-100. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/

[1] G. Hardy, Divergent series, Oxford University Press, Oxford, 1949 | MR | Zbl

[2] A.V. Ustinov, “A discrete analogue of Euler's summation formula”, Math. Notes, 71:6 (2002), 851–856 | DOI | MR | Zbl

[3] A.D. Mednykh, “On a class of difference equations with polynomial coefficients”, Sib. Mat. Zh., 19:6 (1978), 1315–1331 | MR | Zbl

[4] O.A. Shishkina, “The Euler-Maclaurin formula for rational parallelotope”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 13 (2015), 56–71 | Zbl

[5] E.K. Leinartas, O.A. Shishkina, “The discrete analog of the Newton-Leibniz formula in the problem of summation over simplex lattice points”, J. Sib. Fed. Univ., Math. Phys., 12:4 (2019), 503–508 | DOI | MR | Zbl

[6] M. Brion, M. Vergne, “Lattice points in simple polytopes”, J. Am. Math. Soc., 10:2 (1997), 371–392 | DOI | MR | Zbl

[7] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, J. Am. Math. Soc., 10:4 (1997), 797–833 | DOI | MR | Zbl

[8] O.A. Shishkina, “The Euler-Maclaurin formula and differential operator of infinite order”, J. Sib. Fed. Univ., Math. Phys., 8:1 (2015), 86–93 | DOI | MR | Zbl

[9] A.V. Pukhlikov, A.G. Khovanskii, “The Riemann-Roch theorem for integrals and sums of quasipolynomials over virtual polytopes”, St. Petersbg. Math. J., 4:4 (1993), 789–812 | MR | Zbl

[10] A.P. Lyapin, S. Chandragiri, “Generating functions for vector partitions and a basic recurrence relation”, J. Difference Equ. Appl., 25:7 (2019), 1052–1061 | DOI | MR | Zbl

[11] Pita Claudio, “Carlitz-type and other Bernoulli identities”, J. Integer Seq., 19:1 (2016), 16.1.8 | MR | Zbl

[12] A.O. Gel'fond, Ischisleniye konechnykh raznostey, Fizmatlit, M., 2006; 1959 | Zbl

[13] L.I. Ronkin, Introduction to the theory of entire functions of several variables, Nauka, M., 1971 | MR | Zbl

[14] B.V. Shabat, Introduction to complex analysis, Nauka, M., 1969 | MR | Zbl

[15] V.K. Ivanov, “A characterization of the growth of an entire function of two variables and its application to the summation of double power series”, Transl., Ser. 2, Am. Math. Soc., 19 (1962), 179–192 | MR | Zbl

[16] J. Riordan, Combinatorial identities, Nauka, M., 1982 | MR | Zbl

[17] H.W. Gould, Jocelyn Quaintance, Tables of Combinatorial Identities, 2010; 1972 | Zbl