Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a28, author = {E. K. Leinartas and M. E. Petrochenko}, title = {Multidimensional analogues of the {Euler-Maclaurin} summation formula and the {Borel} transform of power series}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {91--100}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/} }
TY - JOUR AU - E. K. Leinartas AU - M. E. Petrochenko TI - Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 91 EP - 100 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/ LA - ru ID - SEMR_2022_19_1_a28 ER -
%0 Journal Article %A E. K. Leinartas %A M. E. Petrochenko %T Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 91-100 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/ %G ru %F SEMR_2022_19_1_a28
E. K. Leinartas; M. E. Petrochenko. Multidimensional analogues of the Euler-Maclaurin summation formula and the Borel transform of power series. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 91-100. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a28/
[1] G. Hardy, Divergent series, Oxford University Press, Oxford, 1949 | MR | Zbl
[2] A.V. Ustinov, “A discrete analogue of Euler's summation formula”, Math. Notes, 71:6 (2002), 851–856 | DOI | MR | Zbl
[3] A.D. Mednykh, “On a class of difference equations with polynomial coefficients”, Sib. Mat. Zh., 19:6 (1978), 1315–1331 | MR | Zbl
[4] O.A. Shishkina, “The Euler-Maclaurin formula for rational parallelotope”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 13 (2015), 56–71 | Zbl
[5] E.K. Leinartas, O.A. Shishkina, “The discrete analog of the Newton-Leibniz formula in the problem of summation over simplex lattice points”, J. Sib. Fed. Univ., Math. Phys., 12:4 (2019), 503–508 | DOI | MR | Zbl
[6] M. Brion, M. Vergne, “Lattice points in simple polytopes”, J. Am. Math. Soc., 10:2 (1997), 371–392 | DOI | MR | Zbl
[7] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, J. Am. Math. Soc., 10:4 (1997), 797–833 | DOI | MR | Zbl
[8] O.A. Shishkina, “The Euler-Maclaurin formula and differential operator of infinite order”, J. Sib. Fed. Univ., Math. Phys., 8:1 (2015), 86–93 | DOI | MR | Zbl
[9] A.V. Pukhlikov, A.G. Khovanskii, “The Riemann-Roch theorem for integrals and sums of quasipolynomials over virtual polytopes”, St. Petersbg. Math. J., 4:4 (1993), 789–812 | MR | Zbl
[10] A.P. Lyapin, S. Chandragiri, “Generating functions for vector partitions and a basic recurrence relation”, J. Difference Equ. Appl., 25:7 (2019), 1052–1061 | DOI | MR | Zbl
[11] Pita Claudio, “Carlitz-type and other Bernoulli identities”, J. Integer Seq., 19:1 (2016), 16.1.8 | MR | Zbl
[12] A.O. Gel'fond, Ischisleniye konechnykh raznostey, Fizmatlit, M., 2006; 1959 | Zbl
[13] L.I. Ronkin, Introduction to the theory of entire functions of several variables, Nauka, M., 1971 | MR | Zbl
[14] B.V. Shabat, Introduction to complex analysis, Nauka, M., 1969 | MR | Zbl
[15] V.K. Ivanov, “A characterization of the growth of an entire function of two variables and its application to the summation of double power series”, Transl., Ser. 2, Am. Math. Soc., 19 (1962), 179–192 | MR | Zbl
[16] J. Riordan, Combinatorial identities, Nauka, M., 1982 | MR | Zbl
[17] H.W. Gould, Jocelyn Quaintance, Tables of Combinatorial Identities, 2010; 1972 | Zbl