Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a26, author = {A. G. Losev and E. A. Mazepa}, title = {Asymptotic behavior of solutions of the {Dirichlet} problem for the {Poisson} equation on model {Riemannian} manifolds}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {66--80}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a26/} }
TY - JOUR AU - A. G. Losev AU - E. A. Mazepa TI - Asymptotic behavior of solutions of the Dirichlet problem for the Poisson equation on model Riemannian manifolds JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 66 EP - 80 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a26/ LA - en ID - SEMR_2022_19_1_a26 ER -
%0 Journal Article %A A. G. Losev %A E. A. Mazepa %T Asymptotic behavior of solutions of the Dirichlet problem for the Poisson equation on model Riemannian manifolds %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 66-80 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a26/ %G en %F SEMR_2022_19_1_a26
A. G. Losev; E. A. Mazepa. Asymptotic behavior of solutions of the Dirichlet problem for the Poisson equation on model Riemannian manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 66-80. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a26/
[1] L.V. Ahlfors, “Sur le type d'une surface de Riemann”, C. R. Acad. Sci. Paris, 201 (1935), 30–32 | MR
[2] R. Nevanlinna, “Ein Satz über offene Riemannsche Flächen”, Ann. Acad. Sci. Fenn., Ser. A, 54:3 (1940), 1–18 | MR | Zbl
[3] A. Grigor'yan, “Analitic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Am. Math. Soc., New Ser., 36:2 (1999), 135–249 | DOI | MR | Zbl
[4] S.Y. Cheng, S.-T. Yau, “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl
[5] V. M. Kesel'man, “The concept and criteria of the capacitive type of the non-compact Riemannian manifold based on the Generalized capacity”, Mathematical Physics and Computer Modeling, 22:2 (2019), 21–32
[6] A.G. Losev, “On the hyperbolicity criterion for noncompact Riemannian manifolds of special type”, Math. Notes, 59:4 (1996), 400–404 | DOI | MR | Zbl
[7] T. Lyons, D. Sullivan, “Function theory, random path and covering spaces”, J. Diff. Geom., 19 (1984), 299–323 | MR | Zbl
[8] A.A. Grigor'yan, “On Liouville theorems for harmonic functions with finite Dirichlet integral”, Math. USSR. Sb., 60:2 (1988), 485–504 | DOI | MR | Zbl
[9] A.G. Losev, “Certain Liouville theorems for Riemannian manifolds of a special form”, Sov. Math., 35:12 (1991), 15–23 | MR | Zbl
[10] P. Li, R. Schoen, “$L^p$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153:3–4 (1984), 279–300 | MR | Zbl
[11] M. Murata, “Positive harmonic functions on rotationary symmetric Riemannian manifolds”, Potential Theory, Proc. Int. Conf. (Nagoya/Jap, 1990), 1992, 251–259 | MR | Zbl
[12] S.Y. Cheng, S.-T. Yau, “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl
[13] A.G. Losev, E.A. Mazepa, “On the asymptotic behavior of solutions of certain elliptic type equations on noncompact Riemannian manifolds”, Russ. Math., 43:6 (1999), 39–47 | MR | Zbl
[14] S.A. Korolkov, A.G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1–2 (2012), 459–472 | DOI | MR | Zbl
[15] C.-J. Sung, L.-F.Tam, J. Wang, “Spaces of harmonic functions”, J. Lond. Math. Soc., II. Ser., 61:3 (2000), 789–806 | DOI | MR | Zbl
[16] M.T. Anderson, “The Dirichlet problem at innity for manifolds of negative curvature”, J. Diff. Geom., 18 (1983), 701–721 | MR | Zbl
[17] D. Sullivan, “The Dirichlet problem at infinity for a negatively curved manifold”, J. Diff. Geom., 18 (1983), 723–732 | MR | Zbl
[18] A. Losev, E. Mazepa, I. Romanova, “Eigenfunctions of the Laplace operator and harmonic functions on model Riemannian manifolds”, Lobachevskii J. Math., 41:11 (2020), 2190–2197 | DOI | MR | Zbl
[19] A.G. Losev, “Solvability of the Dirichlet problem for the Poisson equation on some noncompact Riemannian manifolds”, Differ. Equ., 53:12 (2017), 1595–1604 | DOI | MR | Zbl
[20] P. Mastrolia, D.D. Monticelli, F. Punzo, “Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds”, Adv. Differ. Equ., 23:1–2 (2018), 89–108 | MR | Zbl
[21] O. Munteanu, N. Sesum, “The Poisson equation on complete manifolds with positive spectrum and applications”, Adv. Math., 223:1 (2010), 198–219 | DOI | MR | Zbl
[22] A.K. Gushchin, “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation”, Theor. Math. Phys., 157:3 (2008), 1655–1670 | DOI | MR | Zbl
[23] E.M. Landis, Second order equations of elliptic and parabolic types, Nauka, M., 1971 | MR | Zbl
[24] D. Grieser, “Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary”, Commun. Partial Diff. Equations, 27:7–8 (2002), 1283–1299 | DOI | MR | Zbl