On the closeness of the incompatibility criteria for the original and perturbed systems of equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 326-331
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers the question of the influence of perturbations introduced into the matrix and the right side of a system of linear algebraic equations of a general form on the value of its inconsistency criterion. In this paper, due to the use of a pseudoinverse matrix, a new, more accurate estimate of the proximity of the incompatibility criteria for the original and perturbed systems is established.
Keywords:
rank, condition number of a matrix.
Mots-clés : kernel and image of a matrix, pseudoinverse matrix, singular value decomposition of a matrix
Mots-clés : kernel and image of a matrix, pseudoinverse matrix, singular value decomposition of a matrix
@article{SEMR_2022_19_1_a25,
author = {V. N. Babenko},
title = {On the closeness of the incompatibility criteria for the original and perturbed systems of equations},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {326--331},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/}
}
TY - JOUR AU - V. N. Babenko TI - On the closeness of the incompatibility criteria for the original and perturbed systems of equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 326 EP - 331 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/ LA - ru ID - SEMR_2022_19_1_a25 ER -
%0 Journal Article %A V. N. Babenko %T On the closeness of the incompatibility criteria for the original and perturbed systems of equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 326-331 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/ %G ru %F SEMR_2022_19_1_a25
V. N. Babenko. On the closeness of the incompatibility criteria for the original and perturbed systems of equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 326-331. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/