On the closeness of the incompatibility criteria for the original and perturbed systems of equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 326-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the question of the influence of perturbations introduced into the matrix and the right side of a system of linear algebraic equations of a general form on the value of its inconsistency criterion. In this paper, due to the use of a pseudoinverse matrix, a new, more accurate estimate of the proximity of the incompatibility criteria for the original and perturbed systems is established.
Keywords: rank, condition number of a matrix.
Mots-clés : kernel and image of a matrix, pseudoinverse matrix, singular value decomposition of a matrix
@article{SEMR_2022_19_1_a25,
     author = {V. N. Babenko},
     title = {On the closeness of the incompatibility criteria for the original and perturbed systems of equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {326--331},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/}
}
TY  - JOUR
AU  - V. N. Babenko
TI  - On the closeness of the incompatibility criteria for the original and perturbed systems of equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 326
EP  - 331
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/
LA  - ru
ID  - SEMR_2022_19_1_a25
ER  - 
%0 Journal Article
%A V. N. Babenko
%T On the closeness of the incompatibility criteria for the original and perturbed systems of equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 326-331
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/
%G ru
%F SEMR_2022_19_1_a25
V. N. Babenko. On the closeness of the incompatibility criteria for the original and perturbed systems of equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 326-331. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/

[1] G. Strang, Linear algebra and its applications, Academic Press, New York etc, 1976 | MR | Zbl

[2] A.E. Albert, Regression and the Moore-Penrose pseudoinverse, Mathematics in Science and Engineering, 94, Academic Press, New York–London, 1972 | MR | Zbl

[3] R.J. Hanson, C.L. Lawson, Solving least squares problems, Prentice Hall, Englewood Cliffs, 1974 | MR | Zbl

[4] S.K. Godunov, A.G. Antonov, O.P. Kirilyuk, V.I. Kostin, Guaranteed precision in the solution of systems of linear equations in Euclidean spaces, Nauka, Novosibirsk, 1988 | MR | Zbl

[5] V.N. Babenko, “On the structure of closeness estimates for pseudosolutions of initial and perturbed systems of linear algebraic equations”, Comput. Math. Math. Phys., 59:9 (2019), 1399–1421 | DOI | MR | Zbl