Mots-clés : kernel and image of a matrix, pseudoinverse matrix, singular value decomposition of a matrix
@article{SEMR_2022_19_1_a25,
author = {V. N. Babenko},
title = {On the closeness of the incompatibility criteria for the original and perturbed systems of equations},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {326--331},
year = {2022},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/}
}
TY - JOUR AU - V. N. Babenko TI - On the closeness of the incompatibility criteria for the original and perturbed systems of equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 326 EP - 331 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/ LA - ru ID - SEMR_2022_19_1_a25 ER -
%0 Journal Article %A V. N. Babenko %T On the closeness of the incompatibility criteria for the original and perturbed systems of equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 326-331 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/ %G ru %F SEMR_2022_19_1_a25
V. N. Babenko. On the closeness of the incompatibility criteria for the original and perturbed systems of equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 326-331. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a25/
[1] G. Strang, Linear algebra and its applications, Academic Press, New York etc, 1976 | MR | Zbl
[2] A.E. Albert, Regression and the Moore-Penrose pseudoinverse, Mathematics in Science and Engineering, 94, Academic Press, New York–London, 1972 | MR | Zbl
[3] R.J. Hanson, C.L. Lawson, Solving least squares problems, Prentice Hall, Englewood Cliffs, 1974 | MR | Zbl
[4] S.K. Godunov, A.G. Antonov, O.P. Kirilyuk, V.I. Kostin, Guaranteed precision in the solution of systems of linear equations in Euclidean spaces, Nauka, Novosibirsk, 1988 | MR | Zbl
[5] V.N. Babenko, “On the structure of closeness estimates for pseudosolutions of initial and perturbed systems of linear algebraic equations”, Comput. Math. Math. Phys., 59:9 (2019), 1399–1421 | DOI | MR | Zbl